IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v257y2017i2p687-703.html
   My bibliography  Save this article

Evasive flow capture: A multi-period stochastic facility location problem with independent demand

Author

Listed:
  • Marković, Nikola
  • Ryzhov, Ilya O.
  • Schonfeld, Paul

Abstract

We introduce the problem of locating facilities over a finite time horizon with the goal of intercepting stochastic traffic flows that exhibit evasive behavior, which arises when locating weigh-in-motion systems, tollbooths, vehicle inspection stations, or other fixed flow-capturing facilities used for law enforcement. The problem can be formulated as a multi-stage, mixed-integer stochastic program; however, under certain independence assumptions, this can be reformulated as a large two-stage stochastic program, enabling us to solve much larger instances. We additionally propose an algorithm based on Lagrangian relaxation that separates the reformulated stochastic program into a variant of a deterministic knapsack problem and a sum of time-decoupled single-period stochastic programs that can be solved independently. The model and algorithm are tested on instances involving road networks of Nevada and Vermont. A comparison with the previously studied single-period stochastic programming approach shows that the newly proposed multi-period model substantially reduces the expected cost.

Suggested Citation

  • Marković, Nikola & Ryzhov, Ilya O. & Schonfeld, Paul, 2017. "Evasive flow capture: A multi-period stochastic facility location problem with independent demand," European Journal of Operational Research, Elsevier, vol. 257(2), pages 687-703.
  • Handle: RePEc:eee:ejores:v:257:y:2017:i:2:p:687-703
    DOI: 10.1016/j.ejor.2016.08.020
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S037722171630635X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2016.08.020?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Capar, Ismail & Kuby, Michael & Leon, V. Jorge & Tsai, Yu-Jiun, 2013. "An arc cover–path-cover formulation and strategic analysis of alternative-fuel station locations," European Journal of Operational Research, Elsevier, vol. 227(1), pages 142-151.
    2. Wu, Tai-Hsi & Lin, Jen-Nan, 2003. "Solving the competitive discretionary service facility location problem," European Journal of Operational Research, Elsevier, vol. 144(2), pages 366-378, January.
    3. John Hodgson, M. & Rosing, K. E. & Leontien, A. & Storrier, G., 1996. "Applying the flow-capturing location-allocation model to an authentic network: Edmonton, Canada," European Journal of Operational Research, Elsevier, vol. 90(3), pages 427-443, May.
    4. Chung, Sung Hoon & Kwon, Changhyun, 2015. "Multi-period planning for electric car charging station locations: A case of Korean Expressways," European Journal of Operational Research, Elsevier, vol. 242(2), pages 677-687.
    5. Marshall L. Fisher, 1981. "The Lagrangian Relaxation Method for Solving Integer Programming Problems," Management Science, INFORMS, vol. 27(1), pages 1-18, January.
    6. AGHEZZAF, El-Houssaine, 2005. "Capacity planning and warehouse location in supply chains with uncertain demands," LIDAM Reprints CORE 1808, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    7. George O. Wesolowsky, 1973. "Dynamic Facility Location," Management Science, INFORMS, vol. 19(11), pages 1241-1248, July.
    8. Yolanda M. Carson & Rajan Batta, 1990. "Locating an Ambulance on the Amherst Campus of the State University of New York at Buffalo," Interfaces, INFORMS, vol. 20(5), pages 43-49, October.
    9. Jin Y. Yen, 1971. "Finding the K Shortest Loopless Paths in a Network," Management Science, INFORMS, vol. 17(11), pages 712-716, July.
    10. Oded Berman & Dimitris Bertsimas & Richard C. Larson, 1995. "Locating Discretionary Service Facilities, II: Maximizing Market Size, Minimizing Inconvenience," Operations Research, INFORMS, vol. 43(4), pages 623-632, August.
    11. Hinojosa, Y. & Puerto, J. & Fernandez, F. R., 2000. "A multiperiod two-echelon multicommodity capacitated plant location problem," European Journal of Operational Research, Elsevier, vol. 123(2), pages 271-291, June.
    12. Weiping Zeng & Ignacio Castillo & M. Hodgson, 2010. "A Generalized Model for Locating Facilities on a Network with Flow-Based Demand," Networks and Spatial Economics, Springer, vol. 10(4), pages 579-611, December.
    13. Owen, Susan Hesse & Daskin, Mark S., 1998. "Strategic facility location: A review," European Journal of Operational Research, Elsevier, vol. 111(3), pages 423-447, December.
    14. Michael Kuby & Seow Lim, 2007. "Location of Alternative-Fuel Stations Using the Flow-Refueling Location Model and Dispersion of Candidate Sites on Arcs," Networks and Spatial Economics, Springer, vol. 7(2), pages 129-152, June.
    15. Berman, Obed, 1995. "The maximizing market size discretionary facility location problem with congestion," Socio-Economic Planning Sciences, Elsevier, vol. 29(1), pages 39-46, March.
    16. Lim, Seow & Kuby, Michael, 2010. "Heuristic algorithms for siting alternative-fuel stations using the Flow-Refueling Location Model," European Journal of Operational Research, Elsevier, vol. 204(1), pages 51-61, July.
    17. Nickel, Stefan & Saldanha-da-Gama, Francisco & Ziegler, Hans-Peter, 2012. "A multi-stage stochastic supply network design problem with financial decisions and risk management," Omega, Elsevier, vol. 40(5), pages 511-524.
    18. Sanjay Dominik Jena & Jean-François Cordeau & Bernard Gendron, 2015. "Dynamic Facility Location with Generalized Modular Capacities," Transportation Science, INFORMS, vol. 49(3), pages 484-499, August.
    19. Alexander Shulman, 1991. "An Algorithm for Solving Dynamic Capacitated Plant Location Problems with Discrete Expansion Sizes," Operations Research, INFORMS, vol. 39(3), pages 423-436, June.
    20. Yang, Hai & Zhou, Jing, 1998. "Optimal traffic counting locations for origin-destination matrix estimation," Transportation Research Part B: Methodological, Elsevier, vol. 32(2), pages 109-126, February.
    21. Gzara, Fatma & Erkut, Erhan, 2009. "A Lagrangian relaxation approach to large-scale flow interception problems," European Journal of Operational Research, Elsevier, vol. 198(2), pages 405-411, October.
    22. Averbakh, Igor & Berman, Oded, 1996. "Locating flow-capturing units on a network with multi-counting and diminishing returns to scale," European Journal of Operational Research, Elsevier, vol. 91(3), pages 495-506, June.
    23. Horner, Mark W. & Groves, Sara, 2007. "Network flow-based strategies for identifying rail park-and-ride facility locations," Socio-Economic Planning Sciences, Elsevier, vol. 41(3), pages 255-268, September.
    24. Galvao, Roberto Dieguez & Santibanez-Gonzalez, Ernesto del R., 1992. "A Lagrangean heuristic for the pk-median dynamic location problem," European Journal of Operational Research, Elsevier, vol. 58(2), pages 250-262, April.
    25. Oded Berman & Richard C. Larson & Nikoletta Fouska, 1992. "Optimal Location of Discretionary Service Facilities," Transportation Science, INFORMS, vol. 26(3), pages 201-211, August.
    26. Kuby, Michael & Lim, Seow, 2005. "The flow-refueling location problem for alternative-fuel vehicles," Socio-Economic Planning Sciences, Elsevier, vol. 39(2), pages 125-145, June.
    27. Ivan Contreras & Jean-François Cordeau & Gilbert Laporte, 2011. "The Dynamic Uncapacitated Hub Location Problem," Transportation Science, INFORMS, vol. 45(1), pages 18-32, February.
    28. Santero, Nicholas J & Nokes, William & Harvey, John T, 2005. "Virtual Weigh Stations: The Business Case," Institute of Transportation Studies, Working Paper Series qt2432w0wj, Institute of Transportation Studies, UC Davis.
    29. John R. Birge, 2000. "Option Methods for Incorporating Risk into Linear Capacity Planning Models," Manufacturing & Service Operations Management, INFORMS, vol. 2(1), pages 19-31, August.
    30. E Aghezzaf, 2005. "Capacity planning and warehouse location in supply chains with uncertain demands," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 56(4), pages 453-462, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. F. Hooshmand & S. A. MirHassani, 2018. "An Effective Bilevel Programming Approach for the Evasive Flow Capturing Location Problem," Networks and Spatial Economics, Springer, vol. 18(4), pages 909-935, December.
    2. Bogyrbayeva, Aigerim & Kwon, Changhyun, 2021. "Pessimistic evasive flow capturing problems," European Journal of Operational Research, Elsevier, vol. 293(1), pages 133-148.
    3. Correia, Isabel & Melo, Teresa, 2019. "Dynamic facility location problem with modular capacity adjustments under uncertainty," Technical Reports on Logistics of the Saarland Business School 17, Saarland University of Applied Sciences (htw saar), Saarland Business School.
    4. Soheil Davari, 2019. "The incremental cooperative design of preventive healthcare networks," Annals of Operations Research, Springer, vol. 272(1), pages 445-492, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tanaka, Ken-ichi & Furuta, Takehiro & Toriumi, Shigeki, 2019. "Railway flow interception location model: Model development and case study of Tokyo metropolitan railway network," Operations Research Perspectives, Elsevier, vol. 6(C).
    2. Miyagawa, Masashi, 2010. "Distributions of rectilinear deviation distance to visit a facility," European Journal of Operational Research, Elsevier, vol. 205(1), pages 106-112, August.
    3. Chung, Sung Hoon & Kwon, Changhyun, 2015. "Multi-period planning for electric car charging station locations: A case of Korean Expressways," European Journal of Operational Research, Elsevier, vol. 242(2), pages 677-687.
    4. Zhang, Anpeng & Kang, Jee Eun & Kwon, Changhyun, 2017. "Incorporating demand dynamics in multi-period capacitated fast-charging location planning for electric vehicles," Transportation Research Part B: Methodological, Elsevier, vol. 103(C), pages 5-29.
    5. Silva, Allyson & Aloise, Daniel & Coelho, Leandro C. & Rocha, Caroline, 2021. "Heuristics for the dynamic facility location problem with modular capacities," European Journal of Operational Research, Elsevier, vol. 290(2), pages 435-452.
    6. Li, Shengyin & Huang, Yongxi, 2014. "Heuristic approaches for the flow-based set covering problem with deviation paths," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 72(C), pages 144-158.
    7. Weiping Zeng & Ignacio Castillo & M. Hodgson, 2010. "A Generalized Model for Locating Facilities on a Network with Flow-Based Demand," Networks and Spatial Economics, Springer, vol. 10(4), pages 579-611, December.
    8. Yongxi Huang & Shengyin Li & Zhen Qian, 2015. "Optimal Deployment of Alternative Fueling Stations on Transportation Networks Considering Deviation Paths," Networks and Spatial Economics, Springer, vol. 15(1), pages 183-204, March.
    9. Yıldız, Barış & Arslan, Okan & Karaşan, Oya Ekin, 2016. "A branch and price approach for routing and refueling station location model," European Journal of Operational Research, Elsevier, vol. 248(3), pages 815-826.
    10. Xu, Min & Meng, Qiang, 2020. "Optimal deployment of charging stations considering path deviation and nonlinear elastic demand," Transportation Research Part B: Methodological, Elsevier, vol. 135(C), pages 120-142.
    11. Capar, Ismail & Kuby, Michael & Leon, V. Jorge & Tsai, Yu-Jiun, 2013. "An arc cover–path-cover formulation and strategic analysis of alternative-fuel station locations," European Journal of Operational Research, Elsevier, vol. 227(1), pages 142-151.
    12. M. Fattahi & M. Mahootchi & S. M. Moattar Husseini, 2016. "Integrated strategic and tactical supply chain planning with price-sensitive demands," Annals of Operations Research, Springer, vol. 242(2), pages 423-456, July.
    13. Kuby, Michael & Capar, Ismail & Kim, Jong-Geun, 2017. "Efficient and equitable transnational infrastructure planning for natural gas trucking in the European Union," European Journal of Operational Research, Elsevier, vol. 257(3), pages 979-991.
    14. Hwang, Seong Wook & Kweon, Sang Jin & Ventura, Jose A., 2015. "Infrastructure development for alternative fuel vehicles on a highway road system," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 77(C), pages 170-183.
    15. Wu, Shanhua & Yang, Zhongzhen, 2018. "Locating manufacturing industries by flow-capturing location model – Case of Chinese steel industry," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 112(C), pages 1-11.
    16. Nourbakhsh, Seyed Mohammad & Ouyang, Yanfeng, 2010. "Optimal fueling strategies for locomotive fleets in railroad networks," Transportation Research Part B: Methodological, Elsevier, vol. 44(8-9), pages 1104-1114, September.
    17. Patrick Jochem & Carsten Brendel & Melanie Reuter-Oppermann & Wolf Fichtner & Stefan Nickel, 2016. "Optimizing the allocation of fast charging infrastructure along the German autobahn," Journal of Business Economics, Springer, vol. 86(5), pages 513-535, July.
    18. Chung, Byung Do & Park, Sungjae & Kwon, Changhyun, 2018. "Equitable distribution of recharging stations for electric vehicles," Socio-Economic Planning Sciences, Elsevier, vol. 63(C), pages 1-11.
    19. Hosseini, Meysam & MirHassani, S.A., 2015. "Refueling-station location problem under uncertainty," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 84(C), pages 101-116.
    20. Ventura, Jose A. & Kweon, Sang Jin & Hwang, Seong Wook & Tormay, Matthew & Li, Chenxi, 2017. "Energy policy considerations in the design of an alternative-fuel refueling infrastructure to reduce GHG emissions on a transportation network," Energy Policy, Elsevier, vol. 111(C), pages 427-439.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:257:y:2017:i:2:p:687-703. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.