IDEAS home Printed from https://ideas.repec.org/a/eee/eejocm/v48y2023ics1755534523000325.html
   My bibliography  Save this article

Theory-driven or data-driven? Modelling ride-sourcing mode choices using integrated choice and latent variable model and multi-task learning deep neural networks

Author

Listed:
  • Liu, Yicong
  • Loa, Patrick
  • Wang, Kaili
  • Habib, Khandker Nurul

Abstract

Ride-sourcing services have had a disruptive impact on urban mobility. However, the perceived risk of contracting the COVID-19 virus while using these services has negatively affected people's willingness to travel by this mode. Therefore, it is essential to understand the factors influencing ride-sourcing usage during and after the pandemic. This study utilized data collected through stated preference experiments to model mode choice decisions during and after the pandemic. The study applied both theory-driven integrated choice and latent variable (ICLV) models and data-driven multi-task learning (MTL) deep neural network framework. The study found that the MTL models achieved the highest prediction accuracies. Additionally, econometric information was derived from both ICLV and MTL models. The marginal effects of level-of-service (LOS) variables were largely agreed between the ICLV and MTL models. However, only the latent variables from the ICLV models presented meaningful behavioural interpretations. The study found that individuals who believed there was greater risk associated with ride-sourcing during the pandemic were less likely to use these services. The ICLV model interpretations also indicate that the perceived safety of using ride-sourcing services is higher during the post-pandemic period compared to during the pandemic period. This finding provides reassurance regarding the recovery and growth of ride-sourcing usage in the post-pandemic era.

Suggested Citation

  • Liu, Yicong & Loa, Patrick & Wang, Kaili & Habib, Khandker Nurul, 2023. "Theory-driven or data-driven? Modelling ride-sourcing mode choices using integrated choice and latent variable model and multi-task learning deep neural networks," Journal of choice modelling, Elsevier, vol. 48(C).
  • Handle: RePEc:eee:eejocm:v:48:y:2023:i:c:s1755534523000325
    DOI: 10.1016/j.jocm.2023.100431
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1755534523000325
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jocm.2023.100431?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Vij, Akshay & Walker, Joan L., 2016. "How, when and why integrated choice and latent variable models are latently useful," Transportation Research Part B: Methodological, Elsevier, vol. 90(C), pages 192-217.
    2. Hensher, David A. & Ton, Tu T., 2000. "A comparison of the predictive potential of artificial neural networks and nested logit models for commuter mode choice," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 36(3), pages 155-172, September.
    3. Clewlow, Regina R. & Mishra, Gouri S., 2017. "Disruptive Transportation: The Adoption, Utilization, and Impacts of Ride-Hailing in the United States," Institute of Transportation Studies, Working Paper Series qt82w2z91j, Institute of Transportation Studies, UC Davis.
    4. Daniel McFadden, 1986. "The Choice Theory Approach to Market Research," Marketing Science, INFORMS, vol. 5(4), pages 275-297.
    5. Carolina Silva Costa & Cira Souza Pitombo & Felipe Lobo Umbelino de Souza, 2022. "Travel Behavior before and during the COVID-19 Pandemic in Brazil: Mobility Changes and Transport Policies for a Sustainable Transportation System in the Post-Pandemic Period," Sustainability, MDPI, vol. 14(8), pages 1-25, April.
    6. Kong, Hui & Zhang, Xiaohu & Zhao, Jinhua, 2020. "How does ridesourcing substitute for public transit? A geospatial perspective in Chengdu, China," Journal of Transport Geography, Elsevier, vol. 86(C).
    7. Matson, Grant & McElroy, Sean & Lee, Yongsung & Circella, Giovanni, 2021. "Longitudinal Analysis of COVID-19 Impacts on Mobility: An Early Snapshot of the Emerging Changes in Travel Behavior," Institute of Transportation Studies, Working Paper Series qt2pg7k2gt, Institute of Transportation Studies, UC Davis.
    8. Train, Kenneth E & McFadden, Daniel L & Goett, Andrew A, 1987. "Consumer Attitudes and Voluntary Rate Schedules for Public Utilities," The Review of Economics and Statistics, MIT Press, vol. 69(3), pages 383-391, August.
    9. Alejandro Tirachini, 2020. "Ride-hailing, travel behaviour and sustainable mobility: an international review," Transportation, Springer, vol. 47(4), pages 2011-2047, August.
    10. Loa, Patrick & Nurul Habib, Khandker, 2021. "Examining the influence of attitudinal factors on the use of ride-hailing services in Toronto," Transportation Research Part A: Policy and Practice, Elsevier, vol. 146(C), pages 13-28.
    11. Wang, Shenhao & Wang, Qingyi & Zhao, Jinhua, 2020. "Multitask learning deep neural networks to combine revealed and stated preference data," Journal of choice modelling, Elsevier, vol. 37(C).
    12. Kamargianni, Maria & Dubey, Subodh & Polydoropoulou, Amalia & Bhat, Chandra, 2015. "Investigating the subjective and objective factors influencing teenagers’ school travel mode choice – An integrated choice and latent variable model," Transportation Research Part A: Policy and Practice, Elsevier, vol. 78(C), pages 473-488.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Aaditya, Bh. & Rahul, T.M., 2021. "Psychological impacts of COVID-19 pandemic on the mode choice behaviour: A hybrid choice modelling approach," Transport Policy, Elsevier, vol. 108(C), pages 47-58.
    2. Antonio Borriello & John M. Rose, 2021. "Global versus localised attitudinal responses in discrete choice," Transportation, Springer, vol. 48(1), pages 131-165, February.
    3. Bahamonde-Birke, Francisco J. & Ortúzar, Juan de Dios, 2017. "Analyzing the continuity of attitudinal and perceptual indicators in hybrid choice models," Journal of choice modelling, Elsevier, vol. 25(C), pages 28-39.
    4. Vij, Akshay & Walker, Joan L., 2016. "How, when and why integrated choice and latent variable models are latently useful," Transportation Research Part B: Methodological, Elsevier, vol. 90(C), pages 192-217.
    5. Francisco J. Bahamonde-Birke & Juan de Dios Ortúzar, 2015. "Analyzing the Continuity of Attitudinal and Perceptional Indicators in Hybrid Choice Models," Discussion Papers of DIW Berlin 1528, DIW Berlin, German Institute for Economic Research.
    6. Gustavo García-Melero & Rubén Sainz-González & Pablo Coto-Millán & Alejandra Valencia-Vásquez, 2021. "Sustainable Mobility Policy Analysis Using Hybrid Choice Models: Is It the Right Choice?," Sustainability, MDPI, vol. 13(5), pages 1-16, March.
    7. Motz, Alessandra, 2021. "Consumer acceptance of the energy transition in Switzerland: The role of attitudes explained through a hybrid discrete choice model," Energy Policy, Elsevier, vol. 151(C).
    8. Sascha von Behren & Lisa Bönisch & Ulrich Niklas & Bastian Chlond, 2020. "Revealing Motives for Car Use in Modern Cities—A Case Study from Berlin and San Francisco," Sustainability, MDPI, vol. 12(13), pages 1-18, June.
    9. Zhang, Zhaolin & Zhai, Guocong & Xie, Kun & Xiao, Feng, 2022. "Exploring the nonlinear effects of ridesharing on public transit usage: A case study of San Diego," Journal of Transport Geography, Elsevier, vol. 104(C).
    10. Bouscasse, H., 2018. "Integrated choice and latent variable models: A literature review on mode choice," Working Papers 2018-07, Grenoble Applied Economics Laboratory (GAEL).
    11. Wang, Tingting & Chen, Cynthia, 2012. "Attitudes, mode switching behavior, and the built environment: A longitudinal study in the Puget Sound Region," Transportation Research Part A: Policy and Practice, Elsevier, vol. 46(10), pages 1594-1607.
    12. Xiaoxia Dong & Erick Guerra & Ricardo A. Daziano, 2022. "Impact of TNC on travel behavior and mode choice: a comparative analysis of Boston and Philadelphia," Transportation, Springer, vol. 49(6), pages 1577-1597, December.
    13. Bansal, Prateek & Kumar, Rajeev Ranjan & Raj, Alok & Dubey, Subodh & Graham, Daniel J., 2021. "Willingness to pay and attitudinal preferences of Indian consumers for electric vehicles," Energy Economics, Elsevier, vol. 100(C).
    14. Scorrano, Mariangela & Danielis, Romeo, 2021. "Active mobility in an Italian city: Mode choice determinants and attitudes before and during the Covid-19 emergency," Research in Transportation Economics, Elsevier, vol. 86(C).
    15. Joan L. Walker & Moshe Ben-Akiva, 2011. "Advances in Discrete Choice: Mixture Models," Chapters, in: André de Palma & Robin Lindsey & Emile Quinet & Roger Vickerman (ed.), A Handbook of Transport Economics, chapter 8, Edward Elgar Publishing.
    16. Weibo Li & Maria Kamargianni, 2020. "An Integrated Choice and Latent Variable Model to Explore the Influence of Attitudinal and Perceptual Factors on Shared Mobility Choices and Their Value of Time Estimation," Transportation Science, INFORMS, vol. 54(1), pages 62-83, January.
    17. Ma, Xinwei & Zhang, Shuai & Wu, Tao & Yang, Yizhe & Yu, Jiajie, 2023. "Can dockless and docked bike-sharing substitute each other? Evidence from Nanjing, China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
    18. Jin, Yana & Andersson, Henrik & Zhang, Shiqiu, 2020. "Do preferences to reduce health risks related to air pollution depend on illness type? Evidence from a choice experiment in Beijing, China," Journal of Environmental Economics and Management, Elsevier, vol. 103(C).
    19. Francisco J. Bahamonde-Birke & Juan de Dios Ortúzar, 2015. "About the Categorization of Latent Variables in Hybrid Choice Models," Discussion Papers of DIW Berlin 1527, DIW Berlin, German Institute for Economic Research.
    20. Lee, Yongsung & Lee, Bumsoo, 2022. "What’s eating public transit in the United States? Reasons for declining transit ridership in the 2010s," Transportation Research Part A: Policy and Practice, Elsevier, vol. 157(C), pages 126-143.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:eejocm:v:48:y:2023:i:c:s1755534523000325. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/journal-of-choice-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.