IDEAS home Printed from https://ideas.repec.org/a/eee/transa/v146y2021icp13-28.html
   My bibliography  Save this article

Examining the influence of attitudinal factors on the use of ride-hailing services in Toronto

Author

Listed:
  • Loa, Patrick
  • Nurul Habib, Khandker

Abstract

The continued growth of ride-hailing usage creates the need for policymakers to understand the factors that affect the adoption and utilization of ride-hailing services. Attitudinal and perceptual factors are of particular importance, both because ride-hailing services are still evolving, and a relatively small number of studies have examined the role of these factors. This paper utilizes data from a web-based survey to understand the role that latent attitudinal factors play in adopting and using ride-hailing services in Toronto. Specifically, two binary logistic regression models are used to understand the factors that influence the adoption of exclusive and shared ride-hailing services. Besides, a zero-inflated ordered probit (ZIOP) model is estimated to investigate the factors that affect the frequency with which a person uses ride-hailing. The empirical investigation reveals that the perception of ride-hailing services tends to differ between individuals with ride-hailing experience and those without, which is expected given the relative novelty of ride-hailing. The logistic regression models reveal that, although common attributes affect the likelihood that a person has adopted a ride-hailing service, the influence of these factors varies based on the specific type of service. This underscores the value of distinguishing between exclusive and shared ride-hailing services. The ZIOP model shows that attitudinal factors regarding qualitative trip characteristics, the inclination towards using ride-hailing services in certain situations, and the consideration of parking requirements affect the frequency with which a person uses ride-hailing. Also, transit pass ownership was found to influence the frequency with which a person uses ride-hailing positively. The results of this study aim to provide insights into the adoption and utilization of ride-hailing, which can help inform policies that aim to encourage the use of shared ride-hailing as an alternative to exclusive ride-hailing services.

Suggested Citation

  • Loa, Patrick & Nurul Habib, Khandker, 2021. "Examining the influence of attitudinal factors on the use of ride-hailing services in Toronto," Transportation Research Part A: Policy and Practice, Elsevier, vol. 146(C), pages 13-28.
  • Handle: RePEc:eee:transa:v:146:y:2021:i:c:p:13-28
    DOI: 10.1016/j.tra.2021.02.002
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0965856421000318
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.tra.2021.02.002?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. David P. Baron, 2018. "Disruptive Entrepreneurship and Dual Purpose Strategies: The Case of Uber," Strategy Science, INFORMS, vol. 3(2), pages 439-462, June.
    2. Rodier, Caroline, 2018. "The Effects of Ride Hailing Services on Travel and Associated Greenhouse Gas Emissions," Institute of Transportation Studies, Working Paper Series qt2rv570tt, Institute of Transportation Studies, UC Davis.
    3. Rayle, Lisa & Dai, Danielle & Chan, Nelson & Cervero, Robert & Shaheen, Susan, 2016. "Just a better taxi? A survey-based comparison of taxis, transit, and ridesourcing services in San Francisco," Transport Policy, Elsevier, vol. 45(C), pages 168-178.
    4. Deka, Devajyoti & Fei, Da, 2019. "A comparison of the personal and neighborhood characteristics associated with ridesourcing, transit use, and driving with NHTS data," Journal of Transport Geography, Elsevier, vol. 76(C), pages 24-33.
    5. Alemi, Farzad & Circella, Giovanni & Mokhtarian, Patricia & Handy, Susan, 2018. "Exploring the latent constructs behind the use of ridehailing in California," Journal of choice modelling, Elsevier, vol. 29(C), pages 47-62.
    6. Felipe F. Dias & Patrícia S. Lavieri & Venu M. Garikapati & Sebastian Astroza & Ram M. Pendyala & Chandra R. Bhat, 2017. "A behavioral choice model of the use of car-sharing and ride-sourcing services," Transportation, Springer, vol. 44(6), pages 1307-1323, November.
    7. Scott Middleton & Jinhua Zhao, 2020. "Discriminatory attitudes between ridesharing passengers," Transportation, Springer, vol. 47(5), pages 2391-2414, October.
    8. Hasnine, Md Sami & Lin, TianYang & Weiss, Adam & Habib, Khandker Nurul, 2018. "Determinants of travel mode choices of post-secondary students in a large metropolitan area: The case of the city of Toronto," Journal of Transport Geography, Elsevier, vol. 70(C), pages 161-171.
    9. Anne Brown, 2019. "Redefining Car Access," Journal of the American Planning Association, Taylor & Francis Journals, vol. 85(2), pages 83-95, April.
    10. Harris, Mark N. & Zhao, Xueyan, 2007. "A zero-inflated ordered probit model, with an application to modelling tobacco consumption," Journal of Econometrics, Elsevier, vol. 141(2), pages 1073-1099, December.
    11. Young, Mischa & Allen, Jeff & Farber, Steven, 2020. "Measuring when Uber behaves as a substitute or supplement to transit: An examination of travel-time differences in Toronto," Journal of Transport Geography, Elsevier, vol. 82(C).
    12. Murphy, Kevin M & Topel, Robert H, 2002. "Estimation and Inference in Two-Step Econometric Models," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 88-97, January.
    13. Georgina Santos, 2018. "Sustainability and Shared Mobility Models," Sustainability, MDPI, vol. 10(9), pages 1-13, September.
    14. Clewlow, Regina R. & Mishra, Gouri S., 2017. "Disruptive Transportation: The Adoption, Utilization, and Impacts of Ride-Hailing in the United States," Institute of Transportation Studies, Working Paper Series qt82w2z91j, Institute of Transportation Studies, UC Davis.
    15. Rayle, Lisa & Dai, Danielle & Chan, Nelson & Cervero, Robert & Shaheen, Susan PhD, 2016. "Just A Better Taxi? A Survey-Based Comparison of Taxis, Transit, and Ridesourcing Services in San Francisco," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt60v8r346, Institute of Transportation Studies, UC Berkeley.
    16. Wang, Hai & Yang, Hai, 2019. "Ridesourcing systems: A framework and review," Transportation Research Part B: Methodological, Elsevier, vol. 129(C), pages 122-155.
    17. Ding, Chuan & Wang, Donggen & Liu, Chao & Zhang, Yi & Yang, Jiawen, 2017. "Exploring the influence of built environment on travel mode choice considering the mediating effects of car ownership and travel distance," Transportation Research Part A: Policy and Practice, Elsevier, vol. 100(C), pages 65-80.
    18. Brown, Anne E., 2020. "Who and where rideshares? Rideshare travel and use in Los Angeles," Transportation Research Part A: Policy and Practice, Elsevier, vol. 136(C), pages 120-134.
    19. Scott Middleton & Jinhua Zhao, 0. "Discriminatory attitudes between ridesharing passengers," Transportation, Springer, vol. 0, pages 1-24.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Liu, Yicong & Loa, Patrick & Wang, Kaili & Habib, Khandker Nurul, 2023. "Theory-driven or data-driven? Modelling ride-sourcing mode choices using integrated choice and latent variable model and multi-task learning deep neural networks," Journal of choice modelling, Elsevier, vol. 48(C).
    2. Xiaoyu Zhang & Chunfu Shao & Bobin Wang & Shichen Huang, 2022. "The Impact of COVID-19 on Travel Mode Choice Behavior in Terms of Shared Mobility: A Case Study in Beijing, China," IJERPH, MDPI, vol. 19(12), pages 1-19, June.
    3. Loa, Patrick & Ong, Felita & Hawkins, Jason & Nurul Habib, Khandker, 2023. "Unravelling the relationship between ride-sourcing services and conventional modes in the city of Toronto: A stated preference study," Transport Policy, Elsevier, vol. 141(C), pages 209-220.
    4. Narayanan, Santhanakrishnan & Antoniou, Constantinos, 2023. "Shared mobility services towards Mobility as a Service (MaaS): What, who and when?," Transportation Research Part A: Policy and Practice, Elsevier, vol. 168(C).
    5. Craig Standing & Ferry Jie & Thi Le & Susan Standing & Sharon Biermann, 2021. "Analysis of the Use and Perception of Shared Mobility: A Case Study in Western Australia," Sustainability, MDPI, vol. 13(16), pages 1-14, August.
    6. Hossain, Sanjana & Loa, Patrick & Ong, Felita & Habib, Khandker Nurul, 2022. "The determinants of commute mode usage frequency of post-secondary students in the Greater Toronto and Hamilton Area," Transportation Research Part A: Policy and Practice, Elsevier, vol. 166(C), pages 164-185.
    7. Muhamad Rizki & Tri Basuki Joewono & Dimas Bayu Endrayana Dharmowijoyo & Dwi Prasetyanto, 2021. "The Effects of On- and Before- Journey Advantages Using Ride-Sourcing in Indonesia," Sustainability, MDPI, vol. 13(19), pages 1-20, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Loa, Patrick & Hossain, Sanjana & Liu, Yicong & Nurul Habib, Khandker, 2022. "How has the COVID-19 pandemic affected the use of ride-sourcing services? An empirical evidence-based investigation for the Greater Toronto Area," Transportation Research Part A: Policy and Practice, Elsevier, vol. 155(C), pages 46-62.
    2. Zou, Zhenpeng & Cirillo, Cinzia, 2021. "Does ridesourcing impact driving decisions: A survey weighted regression analysis," Transportation Research Part A: Policy and Practice, Elsevier, vol. 146(C), pages 1-12.
    3. Li, Shengxiao(Alex) & Zhai, Wei & Jiao, Junfeng & Wang, Chao (Kenneth), 2022. "Who loses and who wins in the ride-hailing era? A case study of Austin, Texas," Transport Policy, Elsevier, vol. 120(C), pages 130-138.
    4. Dean, Matthew D. & Kockelman, Kara M., 2021. "Spatial variation in shared ride-hail trip demand and factors contributing to sharing: Lessons from Chicago," Journal of Transport Geography, Elsevier, vol. 91(C).
    5. Barajas, Jesus M. & Brown, Anne, 2021. "Not minding the gap: Does ride-hailing serve transit deserts?," Journal of Transport Geography, Elsevier, vol. 90(C).
    6. Yan, Xiang & Liu, Xinyu & Zhao, Xilei, 2020. "Using machine learning for direct demand modeling of ridesourcing services in Chicago," Journal of Transport Geography, Elsevier, vol. 83(C).
    7. Soria, Jason & Stathopoulos, Amanda, 2021. "Investigating socio-spatial differences between solo ridehailing and pooled rides in diverse communities," Journal of Transport Geography, Elsevier, vol. 95(C).
    8. Tirachini, Alejandro & del Río, Mariana, 2019. "Ride-hailing in Santiago de Chile: Users’ characterisation and effects on travel behaviour," Transport Policy, Elsevier, vol. 82(C), pages 46-57.
    9. Xu, Yiming & Yan, Xiang & Liu, Xinyu & Zhao, Xilei, 2021. "Identifying key factors associated with ridesplitting adoption rate and modeling their nonlinear relationships," Transportation Research Part A: Policy and Practice, Elsevier, vol. 144(C), pages 170-188.
    10. Qiao, Si & Yeh, Anthony Gar-On, 2021. "Is ride-hailing a valuable means of transport in newly developed areas under TOD-oriented urbanization in China? Evidence from Chengdu City," Journal of Transport Geography, Elsevier, vol. 96(C).
    11. Gehrke, Steven R., 2020. "Uber service area expansion in three major American cities," Journal of Transport Geography, Elsevier, vol. 86(C).
    12. Wang, Hai & Yang, Hai, 2019. "Ridesourcing systems: A framework and review," Transportation Research Part B: Methodological, Elsevier, vol. 129(C), pages 122-155.
    13. Aguilera-García, Álvaro & Gomez, Juan & Velázquez, Guillermo & Vassallo, Jose Manuel, 2022. "Ridesourcing vs. traditional taxi services: Understanding users’ choices and preferences in Spain," Transportation Research Part A: Policy and Practice, Elsevier, vol. 155(C), pages 161-178.
    14. Jason Soria & Shelly Etzioni & Yoram Shiftan & Amanda Stathopoulos & Eran Ben-Elia, 2022. "Microtransit adoption in the wake of the COVID-19 pandemic: evidence from a choice experiment with transit and car commuters," Papers 2204.01974, arXiv.org.
    15. Qiao, Si & Zhang, Mengzhu & Yeh, Anthony Gar-On, 2023. "Mind the gender gap in ride-hailing from the demand side," Journal of Transport Geography, Elsevier, vol. 107(C).
    16. Zgheib, Najib & Abou-Zeid, Maya & Kaysi, Isam, 2020. "Modeling demand for ridesourcing as feeder for high capacity mass transit systems with an application to the planned Beirut BRT," Transportation Research Part A: Policy and Practice, Elsevier, vol. 138(C), pages 70-91.
    17. Yu, Haitao & Peng, Zhong-Ren, 2019. "Exploring the spatial variation of ridesourcing demand and its relationship to built environment and socioeconomic factors with the geographically weighted Poisson regression," Journal of Transport Geography, Elsevier, vol. 75(C), pages 147-163.
    18. Bi, Hui & Ye, Zhirui & Hu, Liyang & Zhu, He, 2021. "Why they don't choose bus service? Understanding special online car-hailing behavior near bus stops," Transport Policy, Elsevier, vol. 114(C), pages 280-297.
    19. Vij, Akshay & Ryan, Stacey & Sampson, Spring & Harris, Susan, 2020. "Consumer preferences for on-demand transport in Australia," Transportation Research Part A: Policy and Practice, Elsevier, vol. 132(C), pages 823-839.
    20. Brown, Anne E., 2020. "Who and where rideshares? Rideshare travel and use in Los Angeles," Transportation Research Part A: Policy and Practice, Elsevier, vol. 136(C), pages 120-134.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transa:v:146:y:2021:i:c:p:13-28. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/547/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.