IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v55y2011i1p199-212.html
   My bibliography  Save this article

Simulation smoothing for state-space models: A computational efficiency analysis

Author

Listed:
  • McCausland, William J.
  • Miller, Shirley
  • Pelletier, Denis

Abstract

Simulation smoothing involves drawing state variables (or innovations) in discrete time state-space models from their conditional distribution given parameters and observations. Gaussian simulation smoothing is of particular interest, not only for the direct analysis of Gaussian linear models, but also for the indirect analysis of more general models. Several methods for Gaussian simulation smoothing exist, most of which are based on the Kalman filter. Since states in Gaussian linear state-space models are Gaussian Markov random fields, it is also possible to apply the Cholesky Factor Algorithm (CFA) to draw states. This algorithm takes advantage of the band diagonal structure of the Hessian matrix of the log density to make efficient draws. We show how to exploit the special structure of state-space models to draw latent states even more efficiently. We analyse the computational efficiency of Kalman-filter-based methods, the CFA, and our new method using counts of operations and computational experiments. We show that for many important cases, our method is most efficient. Gains are particularly large for cases where the dimension of observed variables is large or where one makes repeated draws of states for the same parameter values. We apply our method to a multivariate Poisson model with time-varying intensities, which we use to analyse financial market transaction count data.

Suggested Citation

  • McCausland, William J. & Miller, Shirley & Pelletier, Denis, 2011. "Simulation smoothing for state-space models: A computational efficiency analysis," Computational Statistics & Data Analysis, Elsevier, vol. 55(1), pages 199-212, January.
  • Handle: RePEc:eee:csdana:v:55:y:2011:i:1:p:199-212
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167-9473(10)00282-3
    Download Restriction: Full text for ScienceDirect subscribers only.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Stock, James H. & Watson, Mark W., 1999. "Forecasting inflation," Journal of Monetary Economics, Elsevier, vol. 44(2), pages 293-335, October.
    2. Durbin, James & Koopman, Siem Jan, 2012. "Time Series Analysis by State Space Methods," OUP Catalogue, Oxford University Press, edition 2, number 9780199641178, Decembrie.
    3. Song, Juwon & Belin, Thomas R., 2008. "Choosing an appropriate number of factors in factor analysis with incomplete data," Computational Statistics & Data Analysis, Elsevier, vol. 52(7), pages 3560-3569, March.
    4. Carter, C.K. & Kohn, R., "undated". "Markov Chain Monte Carlo in Conditionally Gaussian State Space Models," Statistics Working Paper _003, Australian Graduate School of Management.
    5. Sylvia FrüHwirth-Schnatter & Helga Wagner, 2006. "Auxiliary mixture sampling for parameter-driven models of time series of counts with applications to state space modelling," Biometrika, Biometrika Trust, vol. 93(4), pages 827-841, December.
    6. Sangjoon Kim & Neil Shephard & Siddhartha Chib, 1998. "Stochastic Volatility: Likelihood Inference and Comparison with ARCH Models," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 65(3), pages 361-393.
    7. Håvard Rue, 2001. "Fast sampling of Gaussian Markov random fields," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 63(2), pages 325-338.
    8. Stroud J.R. & Muller P. & Polson N.G., 2003. "Nonlinear State-Space Models With State-Dependent Variances," Journal of the American Statistical Association, American Statistical Association, vol. 98, pages 377-386, January.
    9. Mario Forni & Marc Hallin & Marco Lippi & Lucrezia Reichlin, 2000. "The Generalized Dynamic-Factor Model: Identification And Estimation," The Review of Economics and Statistics, MIT Press, vol. 82(4), pages 540-554, November.
    10. Marc P. Giannoni & Jean Boivin, 2005. "DSGE Models in a Data-Rich Environment," Computing in Economics and Finance 2005 431, Society for Computational Economics.
    11. J. Durbin, 2002. "A simple and efficient simulation smoother for state space time series analysis," Biometrika, Biometrika Trust, vol. 89(3), pages 603-616, August.
    12. Stock, James H & Watson, Mark W, 2002. "Macroeconomic Forecasting Using Diffusion Indexes," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(2), pages 147-162, April.
    13. McCAUSLAND, William, 2008. "The Hessian Method (Highly Efficient State Smoothing, In a Nutshell)," Cahiers de recherche 2008-03, Universite de Montreal, Departement de sciences economiques.
    14. Leonhard Knorr‐Held & Håvard Rue, 2002. "On Block Updating in Markov Random Field Models for Disease Mapping," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 29(4), pages 597-614, December.
    15. Chris Heaton & Victor Solo, 2004. "Identification of causal factor models of stationary time series," Econometrics Journal, Royal Economic Society, vol. 7(2), pages 618-627, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Koop, Gary & Korobilis, Dimitris, 2010. "Bayesian Multivariate Time Series Methods for Empirical Macroeconomics," Foundations and Trends(R) in Econometrics, now publishers, vol. 3(4), pages 267-358, July.
    2. Joshua C.C. Chan & Rodney W. Strachan, 2023. "Bayesian State Space Models In Macroeconometrics," Journal of Economic Surveys, Wiley Blackwell, vol. 37(1), pages 58-75, February.
    3. McCausland, William J., 2012. "The HESSIAN method: Highly efficient simulation smoothing, in a nutshell," Journal of Econometrics, Elsevier, vol. 168(2), pages 189-206.
    4. Drew Creal & Siem Jan Koopman & Eric Zivot, 2008. "The Effect of the Great Moderation on the U.S. Business Cycle in a Time-varying Multivariate Trend-cycle Model," Tinbergen Institute Discussion Papers 08-069/4, Tinbergen Institute.
    5. Jean Boivin & Marc P. Giannoni, 2007. "Global Forces and Monetary Policy Effectiveness," NBER Chapters, in: International Dimensions of Monetary Policy, pages 429-478, National Bureau of Economic Research, Inc.
    6. Van Nieuwenhuyze, Christophe & Benk, Szilard & Rünstler, Gerhard & Cristadoro, Riccardo & Den Reijer, Ard & Jakaitiene, Audrone & Jelonek, Piotr & Rua, António & Ruth, Karsten & Barhoumi, Karim, 2008. "Short-term forecasting of GDP using large monthly datasets: a pseudo real-time forecast evaluation exercise," Occasional Paper Series 84, European Central Bank.
    7. Stock, J.H. & Watson, M.W., 2016. "Dynamic Factor Models, Factor-Augmented Vector Autoregressions, and Structural Vector Autoregressions in Macroeconomics," Handbook of Macroeconomics, in: J. B. Taylor & Harald Uhlig (ed.), Handbook of Macroeconomics, edition 1, volume 2, chapter 0, pages 415-525, Elsevier.
    8. Yasuhiro Omori & Siddhartha Chib & Neil Shephard & Jouchi Nakajima, 2004. "Stochastic Volatility with Leverage: Fast Likelihood Inference," CIRJE F-Series CIRJE-F-297, CIRJE, Faculty of Economics, University of Tokyo.
    9. Drew Creal & Siem Jan Koopman & Eric Zivot, 2010. "Extracting a robust US business cycle using a time-varying multivariate model-based bandpass filter," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 25(4), pages 695-719.
    10. Consolo, Agostino & Favero, Carlo A. & Paccagnini, Alessia, 2009. "On the statistical identification of DSGE models," Journal of Econometrics, Elsevier, vol. 150(1), pages 99-115, May.
    11. Bańbura, Marta & Giannone, Domenico & Lenza, Michele, 2015. "Conditional forecasts and scenario analysis with vector autoregressions for large cross-sections," International Journal of Forecasting, Elsevier, vol. 31(3), pages 739-756.
    12. Alain Galli, 2018. "Which Indicators Matter? Analyzing the Swiss Business Cycle Using a Large-Scale Mixed-Frequency Dynamic Factor Model," Journal of Business Cycle Research, Springer;Centre for International Research on Economic Tendency Surveys (CIRET), vol. 14(2), pages 179-218, November.
    13. G. Rünstler & K. Barhoumi & S. Benk & R. Cristadoro & A. Den Reijer & A. Jakaitiene & P. Jelonek & A. Rua & K. Ruth & C. Van Nieuwenhuyze, 2009. "Short-term forecasting of GDP using large datasets: a pseudo real-time forecast evaluation exercise," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 28(7), pages 595-611.
    14. Joshua Chan & Rodney Strachan, 2012. "Estimation in Non-Linear Non-Gaussian State Space Models with Precision-Based Methods," CAMA Working Papers 2012-13, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
    15. Kihwan Kim & Hyun Hak Kim & Norman R. Swanson, 2023. "Mixing mixed frequency and diffusion indices in good times and in bad: an assessment based on historical data around the great recession of 2008," Empirical Economics, Springer, vol. 64(3), pages 1421-1469, March.
    16. William T. Gavin & Kevin L. Kliesen, 2008. "Forecasting inflation and output: comparing data-rich models with simple rules," Review, Federal Reserve Bank of St. Louis, vol. 90(May), pages 175-192.
    17. István Barra & Agnieszka Borowska & Siem Jan Koopman, 2018. "Bayesian Dynamic Modeling of High-Frequency Integer Price Changes," Journal of Financial Econometrics, Oxford University Press, vol. 16(3), pages 384-424.
    18. Serena Ng & Susannah Scanlan, 2023. "Constructing High Frequency Economic Indicators by Imputation," Papers 2303.01863, arXiv.org, revised Oct 2023.
    19. Jean Boivin & Marc P. Giannoni & Benoît Mojon, 2008. "How Has the Euro Changed the Monetary Transmission?," NBER Working Papers 14190, National Bureau of Economic Research, Inc.
    20. Håvard Rue & Sara Martino & Nicolas Chopin, 2009. "Approximate Bayesian inference for latent Gaussian models by using integrated nested Laplace approximations," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 71(2), pages 319-392, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:55:y:2011:i:1:p:199-212. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.