Advanced Search
MyIDEAS: Login

Auxiliary mixture sampling for parameter-driven models of time series of counts with applications to state space modelling

Contents:

Author Info

  • Sylvia Fr�Hwirth-Schnatter
  • Helga Wagner
Registered author(s):

    Abstract

    We consider parameter-driven models of time series of counts, where the observations are assumed to arise from a Poisson distribution with a mean changing over time according to a latent process. Estimation of these models is carried out within a Bayesian framework using data augmentation and Markov chain Monte Carlo methods. We suggest a new auxiliary mixture sampler, which possesses a Gibbsian transition kernel, where we draw from full conditional distributions belonging to standard distribution families only. Emphasis lies on application to state space modelling of time series of counts, but we show that auxiliary mixture sampling may be applied to a wider range of parameter-driven models, including random-effects models and panel data models based on the Poisson distribution. Copyright 2006, Oxford University Press.

    Download Info

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
    File URL: http://hdl.handle.net/10.1093/biomet/93.4.827
    Download Restriction: Access to full text is restricted to subscribers.

    As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

    Bibliographic Info

    Article provided by Biometrika Trust in its journal Biometrika.

    Volume (Year): 93 (2006)
    Issue (Month): 4 (December)
    Pages: 827-841

    as in new window
    Handle: RePEc:oup:biomet:v:93:y:2006:i:4:p:827-841

    Contact details of provider:
    Postal: Oxford University Press, Great Clarendon Street, Oxford OX2 6DP, UK
    Fax: 01865 267 985
    Email:
    Web page: http://biomet.oxfordjournals.org/

    Order Information:
    Web: http://www.oup.co.uk/journals

    Related research

    Keywords:

    References

    No references listed on IDEAS
    You can help add them by filling out this form.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as in new window

    Cited by:
    1. Kleppe, Tore Selland & Liesenfeld, Roman, 2011. "Efficient high-dimensional importance sampling in mixture frameworks," Economics Working Papers 2011,11, Christian-Albrechts-University of Kiel, Department of Economics.
    2. Frühwirth-Schnatter, Sylvia & Wagner, Helga, 2010. "Stochastic model specification search for Gaussian and partial non-Gaussian state space models," Journal of Econometrics, Elsevier, vol. 154(1), pages 85-100, January.
    3. Nakajima, Jouchi & Kunihama, Tsuyoshi & Omori, Yasuhiro & Frühwirth-Schnatter, Sylvia, 2012. "Generalized extreme value distribution with time-dependence using the AR and MA models in state space form," Computational Statistics & Data Analysis, Elsevier, vol. 56(11), pages 3241-3259.
    4. Frühwirth-Schnatter, Sylvia & Wagner, Helga, 2008. "Marginal likelihoods for non-Gaussian models using auxiliary mixture sampling," Computational Statistics & Data Analysis, Elsevier, vol. 52(10), pages 4608-4624, June.
    5. Tsuyoshi Kunihama & Yasuhiro Omori & Zhengjun Zhang, 2010. "Bayesian Estimation and Particle Filter for Max-Stable Processes," CIRJE F-Series CIRJE-F-757, CIRJE, Faculty of Economics, University of Tokyo.
    6. Adebayo, Samson B. & Fahrmeir, Ludwig & Seiler, Christian, 2009. "Geoadditive latent variable modelling of count data on multiple sexual partnering in Nigeria," MPRA Paper 27839, University Library of Munich, Germany.
    7. McCausland, William J., 2012. "The HESSIAN method: Highly efficient simulation smoothing, in a nutshell," Journal of Econometrics, Elsevier, vol. 168(2), pages 189-206.
    8. McCausland, William J. & Miller, Shirley & Pelletier, Denis, 2011. "Simulation smoothing for state-space models: A computational efficiency analysis," Computational Statistics & Data Analysis, Elsevier, vol. 55(1), pages 199-212, January.
    9. Kleppe, Tore Selland & Liesenfeld, Roman, 2014. "Efficient importance sampling in mixture frameworks," Computational Statistics & Data Analysis, Elsevier, vol. 76(C), pages 449-463.
    10. Chan, Joshua & Strachan, Rodney, 2012. "Estimation in Non-Linear Non-Gaussian State Space Models with Precision-Based Methods," MPRA Paper 39360, University Library of Munich, Germany.
    11. Feigin, Paul D. & Gould, Phillip & Martin, Gael M. & Snyder, Ralph D., 2008. "Feasible parameter regions for alternative discrete state space models," Statistics & Probability Letters, Elsevier, vol. 78(17), pages 2963-2970, December.
    12. Ralph D. Snyder & Gael M. Martin & Phillip Gould & Paul D. Feigin, 2007. "An Assessment of Alternative State Space Models for Count Time Series," Monash Econometrics and Business Statistics Working Papers 4/07, Monash University, Department of Econometrics and Business Statistics.

    Lists

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    Statistics

    Access and download statistics

    Corrections

    When requesting a correction, please mention this item's handle: RePEc:oup:biomet:v:93:y:2006:i:4:p:827-841. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Oxford University Press) or (Christopher F. Baum).

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.