IDEAS home Printed from https://ideas.repec.org/a/eee/chieco/v65y2021ics1043951x20301735.html
   My bibliography  Save this article

Accounting and determinants analysis of China's provincial total factor productivity considering carbon emissions

Author

Listed:
  • Gao, Yuning
  • Zhang, Meichen
  • Zheng, Jinghai

Abstract

One of the most undesirable output of China's rapid economic growth has been increasing carbon emissions. This study measures and analyzes the impact of carbon emissions on China's regional total factor productivity from 2000 to 2017. Using global Malmquist-Luenberger productivity indexes, we re-estimate the provincial total factor productivity taking carbon emission into account, comparing different assumptions of returns to scale and considering the rank reverse issue. The differences of technical progress and efficiency change across Chinese regional economies are also investigated and we found that the former was the primary contributor to improved Chinese provincial productivity performance. In addition, we analyze the influencing factors of productivity based on provincial panel data. Our results indicate that innovation capacity, energy and employment structure had significant impact on the provincial productivities while urbanization had a negative impact. A more sustainable development can be expected by expanding regional investment in R&D, adjusting and optimizing structures of regional industries and energies.

Suggested Citation

  • Gao, Yuning & Zhang, Meichen & Zheng, Jinghai, 2021. "Accounting and determinants analysis of China's provincial total factor productivity considering carbon emissions," China Economic Review, Elsevier, vol. 65(C).
  • Handle: RePEc:eee:chieco:v:65:y:2021:i:c:s1043951x20301735
    DOI: 10.1016/j.chieco.2020.101576
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1043951X20301735
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chieco.2020.101576?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Liu, Guangtian & Wang, Bing & Zhang, Ning, 2016. "A coin has two sides: Which one is driving China’s green TFP growth?," Economic Systems, Elsevier, vol. 40(3), pages 481-498.
    2. Feng, Chao & Huang, Jian-Bai & Wang, Miao, 2018. "Analysis of green total-factor productivity in China's regional metal industry: A meta-frontier approach," Resources Policy, Elsevier, vol. 58(C), pages 219-229.
    3. Meng, Fanyi & Su, Bin & Thomson, Elspeth & Zhou, Dequn & Zhou, P., 2016. "Measuring China’s regional energy and carbon emission efficiency with DEA models: A survey," Applied Energy, Elsevier, vol. 183(C), pages 1-21.
    4. Yuko Arayama & Katsuya Miyoshi, 2004. "Regional Diversity and Sources of Economic Growth in China," The World Economy, Wiley Blackwell, vol. 27(10), pages 1583-1607, November.
    5. Pastor, Jesus T. & Lovell, C.A. Knox, 2005. "A global Malmquist productivity index," Economics Letters, Elsevier, vol. 88(2), pages 266-271, August.
    6. Du, Juan & Chen, Yao & Huang, Ying, 2018. "A Modified Malmquist-Luenberger Productivity Index: Assessing Environmental Productivity Performance in China," European Journal of Operational Research, Elsevier, vol. 269(1), pages 171-187.
    7. Yu, Shiwei & Zheng, Shuhong & Li, Xia & Li, Longxi, 2018. "China can peak its energy-related carbon emissions before 2025: Evidence from industry restructuring," Energy Economics, Elsevier, vol. 73(C), pages 91-107.
    8. Coe, David T. & Helpman, Elhanan, 1995. "International R&D spillovers," European Economic Review, Elsevier, vol. 39(5), pages 859-887, May.
    9. Dong-hyun Oh, 2010. "A global Malmquist-Luenberger productivity index," Journal of Productivity Analysis, Springer, vol. 34(3), pages 183-197, December.
    10. Dariush Khezrimotlagh & Yao Chen, 2018. "Data Envelopment Analysis," International Series in Operations Research & Management Science, in: Decision Making and Performance Evaluation Using Data Envelopment Analysis, chapter 0, pages 217-234, Springer.
    11. Gao, Yuning & Zhang, Meichen, 2019. "The measure of technical efficiency of China’s provinces with carbon emission factor and the analysis of the influence of structural variables," Structural Change and Economic Dynamics, Elsevier, vol. 49(C), pages 120-129.
    12. Li, Ke & Lin, Boqiang, 2017. "Economic growth model, structural transformation, and green productivity in China," Applied Energy, Elsevier, vol. 187(C), pages 489-500.
    13. Laurenceson, James & O'Donnell, Christopher, 2014. "New estimates and a decomposition of provincial productivity change in China," China Economic Review, Elsevier, vol. 30(C), pages 86-97.
    14. Wei, Wei & Zhang, Wan-Li & Wen, Jun & Wang, Jun-Sheng, 2020. "TFP growth in Chinese cities: The role of factor-intensity and industrial agglomeration," Economic Modelling, Elsevier, vol. 91(C), pages 534-549.
    15. Acheampong, Alex O. & Amponsah, Mary & Boateng, Elliot, 2020. "Does financial development mitigate carbon emissions? Evidence from heterogeneous financial economies," Energy Economics, Elsevier, vol. 88(C).
    16. Chen, Shiyi, 2015. "Environmental pollution emissions, regional productivity growth and ecological economic development in China," China Economic Review, Elsevier, vol. 35(C), pages 171-182.
    17. Robert E. Hall & Charles I. Jones, 1999. "Why do Some Countries Produce So Much More Output Per Worker than Others?," The Quarterly Journal of Economics, Oxford University Press, vol. 114(1), pages 83-116.
    18. Chieko Umetsu & Thamana Lekprichakul & Ujjayant Chakravorty, 2003. "Efficiency and Technical Change in the Philippine Rice Sector: A Malmquist Total Factor Productivity Analysis," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 85(4), pages 943-963.
    19. Boussemart, Jean Philippe & Leleu, Hervé & Shen, Zhiyang, 2015. "Environmental growth convergence among Chinese regions," China Economic Review, Elsevier, vol. 34(C), pages 1-18.
    20. Li, Meng & Gao, Yuning & Liu, Shenglong, 2020. "China’s energy intensity change in 1997–2015: Non-vertical adjusted structural decomposition analysis based on input-output tables," Structural Change and Economic Dynamics, Elsevier, vol. 53(C), pages 222-236.
    21. Wu, Haitao & Hao, Yu & Ren, Siyu, 2020. "How do environmental regulation and environmental decentralization affect green total factor energy efficiency: Evidence from China," Energy Economics, Elsevier, vol. 91(C).
    22. Caves, Douglas W & Christensen, Laurits R & Diewert, W Erwin, 1982. "The Economic Theory of Index Numbers and the Measurement of Input, Output, and Productivity," Econometrica, Econometric Society, vol. 50(6), pages 1393-1414, November.
    23. Gregory C. Chow, 1993. "Capital Formation and Economic Growth in China," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 108(3), pages 809-842.
    24. Shi, Xinzheng & Xu, Zhufeng, 2018. "Environmental regulation and firm exports: Evidence from the eleventh Five-Year Plan in China," Journal of Environmental Economics and Management, Elsevier, vol. 89(C), pages 187-200.
    25. Xia, Fan & Xu, Jintao, 2020. "Green total factor productivity: A re-examination of quality of growth for provinces in China," China Economic Review, Elsevier, vol. 62(C).
    26. Huang, Junbing & Cai, Xiaochen & Huang, Shuo & Tian, Sen & Lei, Hongyan, 2019. "Technological factors and total factor productivity in China: Evidence based on a panel threshold model," China Economic Review, Elsevier, vol. 54(C), pages 271-285.
    27. Xu, Bin & Lin, Boqiang, 2020. "Investigating drivers of CO2 emission in China’s heavy industry: A quantile regression analysis," Energy, Elsevier, vol. 206(C).
    28. Zhu, Xuehong & Chen, Ying & Feng, Chao, 2018. "Green total factor productivity of China's mining and quarrying industry: A global data envelopment analysis," Resources Policy, Elsevier, vol. 57(C), pages 1-9.
    29. Song, Malin & Peng, Jun & Wang, Jianlin & Zhao, Jiajia, 2018. "Environmental efficiency and economic growth of China: A Ray slack-based model analysis," European Journal of Operational Research, Elsevier, vol. 269(1), pages 51-63.
    30. Jing Cao, 2007. "Measuring Green Productivity Growth for China's Manufacturing Sectors: 1991–2000," Asian Economic Journal, East Asian Economic Association, vol. 21(4), pages 425-451, December.
    31. Springer, Cecilia & Evans, Sam & Lin, Jiang & Roland-Holst, David, 2019. "Low carbon growth in China: The role of emissions trading in a transitioning economy," Applied Energy, Elsevier, vol. 235(C), pages 1118-1125.
    32. Tone, Kaoru, 2001. "A slacks-based measure of efficiency in data envelopment analysis," European Journal of Operational Research, Elsevier, vol. 130(3), pages 498-509, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wu, Qingyang & Wang, Yanying, 2022. "How does carbon emission price stimulate enterprises' total factor productivity? Insights from China's emission trading scheme pilots," Energy Economics, Elsevier, vol. 109(C).
    2. Lin, Boqiang & Li, Zheng, 2022. "Towards world's low carbon development: The role of clean energy," Applied Energy, Elsevier, vol. 307(C).
    3. Suyang Xiao & Susu Wang & Fanhua Zeng & Wei-Chiao Huang, 2022. "Spatial Differences and Influencing Factors of Industrial Green Total Factor Productivity in Chinese Industries," Sustainability, MDPI, vol. 14(15), pages 1-24, July.
    4. Shen, Zhiyang & Wu, Haitao & Bai, Kaixuan & Hao, Yu, 2022. "Integrating economic, environmental and societal performance within the productivity measurement," Technological Forecasting and Social Change, Elsevier, vol. 176(C).
    5. Qinhang Xu & Peixin Zhu & Liang Tang, 2022. "Agricultural Services: Another Way of Farmland Utilization and Its Effect on Agricultural Green Total Factor Productivity in China," Land, MDPI, vol. 11(8), pages 1-15, July.
    6. Qin, Xiaodi & Wu, Haitao & Li, Rongrong, 2022. "Digital finance and household carbon emissions in China," China Economic Review, Elsevier, vol. 76(C).
    7. Xin Nie & Zhoupeng Chen & Linfang Yang & Qiaoling Wang & Jiaxin He & Huixian Qin & Han Wang, 2022. "Impact of Carbon Trading System on Green Economic Growth in China," Land, MDPI, vol. 11(8), pages 1-16, July.
    8. Dan Wang & Yan Liu & Yu Cheng, 2023. "Effects and Spatial Spillover of Manufacturing Agglomeration on Carbon Emissions in the Yellow River Basin, China," Sustainability, MDPI, vol. 15(12), pages 1-18, June.
    9. Le Sun & Congmou Zhu & Shaofeng Yuan & Lixia Yang & Shan He & Wuyan Li, 2022. "Exploring the Impact of Digital Inclusive Finance on Agricultural Carbon Emission Performance in China," IJERPH, MDPI, vol. 19(17), pages 1-18, September.
    10. Hongfeng Zhang & Lu Huang & Yan Zhu & Hongyun Si & Xu He, 2021. "Does Low-Carbon City Construction Improve Total Factor Productivity? Evidence from a Quasi-Natural Experiment in China," IJERPH, MDPI, vol. 18(22), pages 1-21, November.
    11. Chen, Yingwen & Wong, Christina W.Y. & Yang, Rui & Miao, Xin, 2021. "Optimal structure adjustment strategy, emission reduction potential and utilization efficiency of fossil energies in China," Energy, Elsevier, vol. 237(C).
    12. Michael So, 2023. "Empirical Analysis of the Carbon Accounting Information Disclosure (CAID) Affecting R&D Investment and Sustainable Development in State-Owned and Non-State-Owned Enterprises," Sustainability, MDPI, vol. 15(4), pages 1-21, February.
    13. Da Gao & Xinlin Mo & Ruochan Xiong & Zhiliang Huang, 2022. "Tax Policy and Total Factor Carbon Emission Efficiency: Evidence from China’s VAT Reform," IJERPH, MDPI, vol. 19(15), pages 1-17, July.
    14. Ma, Yubo & Fan, Yufeng & Razzaq, Asif, 2023. "Influence of technical efficiency and globalization on sustainable resources management: Evidence from South Asian countries," Resources Policy, Elsevier, vol. 81(C).
    15. Dongdong Lu & Zilong Wang, 2023. "Towards green economic recovery: how to improve green total factor productivity," Economic Change and Restructuring, Springer, vol. 56(5), pages 3163-3185, October.
    16. Lee, Chi-Chuan & Lee, Chien-Chiang, 2022. "How does green finance affect green total factor productivity? Evidence from China," Energy Economics, Elsevier, vol. 107(C).
    17. Jun Wu & Tianyi Chen, 2022. "Impact of Digital Economy on Dual Circulation: An Empirical Analysis in China," Sustainability, MDPI, vol. 14(21), pages 1-15, November.
    18. Zhuohui Yu & Shiping Mao & Qingning Lin, 2022. "Has China’s Carbon Emissions Trading Pilot Policy Improved Agricultural Green Total Factor Productivity?," Agriculture, MDPI, vol. 12(9), pages 1-21, September.
    19. Lee, Chien-Chiang & He, Zhi-Wen & Yuan, Zihao, 2023. "A pathway to sustainable development: Digitization and green productivity," Energy Economics, Elsevier, vol. 124(C).
    20. Zebin Zheng & Wenjun Xiao & Ziye Cheng, 2023. "China’s Green Total Factor Energy Efficiency Assessment Based on Coordinated Reduction in Pollution and Carbon Emission: From the 11th to the 13th Five-Year Plan," Sustainability, MDPI, vol. 15(9), pages 1-20, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ruomeng Zhou & Yunsheng Zhang, 2023. "Measurement of Urban Green Total Factor Productivity and Analysis of Its Temporal and Spatial Evolution in China," Sustainability, MDPI, vol. 15(12), pages 1-32, June.
    2. Lee, Chi-Chuan & Lee, Chien-Chiang, 2022. "How does green finance affect green total factor productivity? Evidence from China," Energy Economics, Elsevier, vol. 107(C).
    3. Qingyan Zhu, 2023. "How Will the Relationship between Technological Innovation and Green Total Factor Productivity Change under the Influence of Service-Oriented Upgrading of Industrial Structure?," Sustainability, MDPI, vol. 15(6), pages 1-16, March.
    4. Huang, Hongyun & Mo, Renbian & Chen, Xingquan, 2021. "New patterns in China's regional green development: An interval Malmquist–Luenberger productivity analysis," Structural Change and Economic Dynamics, Elsevier, vol. 58(C), pages 161-173.
    5. Meiling Wang & Silu Pang & Ikram Hmani & Ilham Hmani & Cunfang Li & Zhengxia He, 2021. "Towards sustainable development: How does technological innovation drive the increase in green total factor productivity?," Sustainable Development, John Wiley & Sons, Ltd., vol. 29(1), pages 217-227, January.
    6. Li, Hai-ling & Zhu, Xue-hong & Chen, Jin-yu & Jiang, Fei-tao, 2019. "Environmental regulations, environmental governance efficiency and the green transformation of China's iron and steel enterprises," Ecological Economics, Elsevier, vol. 165(C), pages 1-1.
    7. Meng, Ming & Qu, Danlei, 2022. "Understanding the green energy efficiencies of provinces in China: A Super-SBM and GML analysis," Energy, Elsevier, vol. 239(PA).
    8. Xi Qin & Xiaoling Wang & Yusen Xu & Yawen Wei, 2019. "Exploring Driving Forces of Green Growth: Empirical Analysis on China’s Iron and Steel Industry," Sustainability, MDPI, vol. 11(4), pages 1-11, February.
    9. Xi Zhang & Rui Li & Jinglei Zhang, 2022. "Understanding the Green Total Factor Productivity of Manufacturing Industry in China: Analysis Based on the Super-SBM Model with Undesirable Outputs," Sustainability, MDPI, vol. 14(15), pages 1-16, July.
    10. Rui Jiang & Chunxue Liu & Xiaowei Liu & Shuai Zhang, 2022. "Space–Time Effect of Green Total Factor Productivity in Mineral Resources Industry in China: Based on Space–Time Semivariogram and SPVAR Model," Sustainability, MDPI, vol. 14(14), pages 1-16, July.
    11. Weixiang Zhao & Yankun Xu, 2022. "Public Expenditure and Green Total Factor Productivity: Evidence from Chinese Prefecture-Level Cities," IJERPH, MDPI, vol. 19(9), pages 1-27, May.
    12. Chen, Xiang & Chen, Yong & Huang, Wenli & Zhang, Xuping, 2023. "A new Malmquist-type green total factor productivity measure: An application to China," Energy Economics, Elsevier, vol. 117(C).
    13. Lena, Daniela & Pasurka, Carl A. & Cucculelli, Marco, 2022. "Environmental regulation and green productivity growth: Evidence from Italian manufacturing industries," Technological Forecasting and Social Change, Elsevier, vol. 184(C).
    14. Chaofan Chen & Qingxin Lan & Ming Gao & Yawen Sun, 2018. "Green Total Factor Productivity Growth and Its Determinants in China’s Industrial Economy," Sustainability, MDPI, vol. 10(4), pages 1-25, April.
    15. Shuying Wang & Yifei Gao & Hongchang Zhou, 2022. "Research on Green Total Factor Productivity Enhancement Path from the Configurational Perspective—Based on the TOE Theoretical Framework," Sustainability, MDPI, vol. 14(21), pages 1-20, October.
    16. Pastor, Jesus T. & Lovell, C.A. Knox & Aparicio, Juan, 2020. "Defining a new graph inefficiency measure for the proportional directional distance function and introducing a new Malmquist productivity index," European Journal of Operational Research, Elsevier, vol. 281(1), pages 222-230.
    17. Huaping Zhang & Yue Dong, 2022. "Measurement and Spatial Correlations of Green Total Factor Productivities of Chinese Provinces," Sustainability, MDPI, vol. 14(9), pages 1-15, April.
    18. Cenjie Liu & Zhongbao Zhou & Qing Liu & Rui Xie & Ximei Zeng, 2020. "Can a low-carbon development path achieve win-win development: evidence from China’s low-carbon pilot policy," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 25(7), pages 1199-1219, October.
    19. Yongyi Cheng & Liheng Lu & Tianyuan Shao & Manhong Shen & Laiqun Jin, 2018. "Decomposition Analysis of Factors Affecting Changes in Industrial Wastewater Emission Intensity in China: Based on a SSBM-GMI Approach," IJERPH, MDPI, vol. 15(12), pages 1-23, December.
    20. Yongyi Cheng & Tianyuan Shao & Huilin Lai & Manhong Shen & Yi Li, 2019. "Total-Factor Eco-Efficiency and Its Influencing Factors in the Yangtze River Delta Urban Agglomeration, China," IJERPH, MDPI, vol. 16(20), pages 1-14, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chieco:v:65:y:2021:i:c:s1043951x20301735. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/chieco .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.