IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i21p14082-d956595.html
   My bibliography  Save this article

Research on Green Total Factor Productivity Enhancement Path from the Configurational Perspective—Based on the TOE Theoretical Framework

Author

Listed:
  • Shuying Wang

    (School of Management, Zhengzhou University, Zhengzhou 450001, China)

  • Yifei Gao

    (School of Management, Zhengzhou University, Zhengzhou 450001, China)

  • Hongchang Zhou

    (School of Information Management, Zhengzhou University, Zhengzhou 450001, China)

Abstract

Increasing Green Total Factor Productivity (GTFP) is the strategy to overcome resource and environmental limitations and achieve green and sustainable regional economic development. This study introduces the Technology–Organization–Environment (TOE) theoretical framework and the Fuzzy set Qualitative Comparative Analysis (fsQCA) method into the study of GTFP. We use the fsQCA method to empirically explore the linkage matching patterns of multiple conditions such as technology, organization, and environment in the TOE framework for influencing GTFP from a configurational perspective using 30 Chinese provinces and cities as case studies. This study provides new concepts and methodologies for GTFP-related research. The study’s findings indicate that: (1) There are two paths to generating high GTFP: the type of organizational management and the type of technical support. The two paths produce non-high GTFP, namely, a type of organizational management deficit and environmental support deficiency and a type of organizational management imbalance and technological support deficiency, respectively. This research verifies the existence of causal asymmetry in the GTFP phenomena. (2) In addition, there are substitutes between combinations of organizational conditions and technical conditions and between technical conditions and environmental conditions under specific circumstances. This discovery broadens the scope of how the TOE framework can be used to explain “causal complexity” and, in some ways, resolves the theoretical conundrum it now faces. (3) According to the sub-regional study, GTFP improvement tactics have substantial spatial distribution characteristics, with China’s eastern and central regions achieving them through organizational management and technical support strategies. Only the organizational management type is prevalent in the western region. This study is useful for the local planning of GTFP enhancement paths in each Chinese province to achieve a win–win situation between economic development and environmental conservation, as well as to provide empirical evidence for nations in a similar situation to China.

Suggested Citation

  • Shuying Wang & Yifei Gao & Hongchang Zhou, 2022. "Research on Green Total Factor Productivity Enhancement Path from the Configurational Perspective—Based on the TOE Theoretical Framework," Sustainability, MDPI, vol. 14(21), pages 1-20, October.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:21:p:14082-:d:956595
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/21/14082/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/21/14082/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Fan, Di & Li, Yi & Chen, Liang, 2017. "Configuring innovative societies: The crossvergent role of cultural and institutional varieties," Technovation, Elsevier, vol. 66, pages 43-56.
    2. De Crescenzo, Veronica & Ribeiro-Soriano, Domingo Enrique & Covin, Jeffrey G., 2020. "Exploring the viability of equity crowdfunding as a fundraising instrument: A configurational analysis of contingency factors that lead to crowdfunding success and failure," Journal of Business Research, Elsevier, vol. 115(C), pages 348-356.
    3. Jinhuang Mao & Qiong Wu & Meihong Zhu & Chengpeng Lu, 2022. "Effects of Environmental Regulation on Green Total Factor Productivity: An Evidence from the Yellow River Basin, China," Sustainability, MDPI, vol. 14(4), pages 1-21, February.
    4. Dariush Khezrimotlagh & Yao Chen, 2018. "Data Envelopment Analysis," International Series in Operations Research & Management Science, in: Decision Making and Performance Evaluation Using Data Envelopment Analysis, chapter 0, pages 217-234, Springer.
    5. Yang Yang & Heng Ma & Guosong Wu, 2022. "Agricultural Green Total Factor Productivity under the Distortion of the Factor Market in China," Sustainability, MDPI, vol. 14(15), pages 1-15, July.
    6. Suyang Xiao & Susu Wang & Fanhua Zeng & Wei-Chiao Huang, 2022. "Spatial Differences and Influencing Factors of Industrial Green Total Factor Productivity in Chinese Industries," Sustainability, MDPI, vol. 14(15), pages 1-24, July.
    7. Yang, Zhenbing & Shao, Shuai & Yang, Lili & Miao, Zhuang, 2018. "Improvement pathway of energy consumption structure in China's industrial sector: From the perspective of directed technical change," Energy Economics, Elsevier, vol. 72(C), pages 166-176.
    8. Ali, Ghaffar & Ashraf, Aqdas & Bashir, Muhammad Khalid & Cui, Shenghui, 2017. "Exploring environmental Kuznets curve (EKC) in relation to green revolution: A case study of Pakistan," Environmental Science & Policy, Elsevier, vol. 77(C), pages 166-171.
    9. Chaofan Chen & Qingxin Lan & Ming Gao & Yawen Sun, 2018. "Green Total Factor Productivity Growth and Its Determinants in China’s Industrial Economy," Sustainability, MDPI, vol. 10(4), pages 1-25, April.
    10. Lu-Hui Gao & Guo-Qing Wang & Jing Zhang & Muhammad Javaid, 2021. "Industrial Agglomeration Analysis Based on Spatial Durbin Model: Evidence from Beijing-Tianjin-Hebei Economic Circle in China," Complexity, Hindawi, vol. 2021, pages 1-10, July.
    11. Ke-Liang Wang & Shuang He & Fu-Qin Zhang, 2021. "Relationship between FDI, fiscal expenditure and green total-factor productivity in China: From the perspective of spatial spillover," PLOS ONE, Public Library of Science, vol. 16(4), pages 1-28, April.
    12. Xiaocang Xu & Xiuquan Huang & Jun Huang & Xin Gao & Linhong Chen, 2019. "Spatial-Temporal Characteristics of Agriculture Green Total Factor Productivity in China, 1998–2016: Based on More Sophisticated Calculations of Carbon Emissions," IJERPH, MDPI, vol. 16(20), pages 1-16, October.
    13. Nigel Driffield & James H. Love & Karl Taylor, 2009. "Productivity And Labour Demand Effects Of Inward And Outward Foreign Direct Investment On Uk Industry," Manchester School, University of Manchester, vol. 77(2), pages 171-203, March.
    14. Li, Ke & Lin, Boqiang, 2017. "Economic growth model, structural transformation, and green productivity in China," Applied Energy, Elsevier, vol. 187(C), pages 489-500.
    15. Thomas Greckhamer, 2016. "CEO compensation in relation to worker compensation across countries: The configurational impact of country-level institutions," Strategic Management Journal, Wiley Blackwell, vol. 37(4), pages 793-815, April.
    16. Shiying Hou & Liangrong Song, 2021. "Market Integration and Regional Green Total Factor Productivity: Evidence from China’s Province-Level Data," Sustainability, MDPI, vol. 13(2), pages 1-19, January.
    17. Xia, Fan & Xu, Jintao, 2020. "Green total factor productivity: A re-examination of quality of growth for provinces in China," China Economic Review, Elsevier, vol. 62(C).
    18. Zhu, Xuehong & Chen, Ying & Feng, Chao, 2018. "Green total factor productivity of China's mining and quarrying industry: A global data envelopment analysis," Resources Policy, Elsevier, vol. 57(C), pages 1-9.
    19. Ullah, Fahim & Qayyum, Siddra & Thaheem, Muhammad Jamaluddin & Al-Turjman, Fadi & Sepasgozar, Samad M.E., 2021. "Risk management in sustainable smart cities governance: A TOE framework," Technological Forecasting and Social Change, Elsevier, vol. 167(C).
    20. Wu, Haitao & Hao, Yu & Ren, Siyu & Yang, Xiaodong & Xie, Guo, 2021. "Does internet development improve green total factor energy efficiency? Evidence from China," Energy Policy, Elsevier, vol. 153(C).
    21. Samuli Patala & Jouni K. Juntunen & Sarianna Lundan & Tiina Ritvala, 2021. "Multinational energy utilities in the energy transition: A configurational study of the drivers of FDI in renewables," Journal of International Business Studies, Palgrave Macmillan;Academy of International Business, vol. 52(5), pages 930-950, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yahong Feng & Xinyi Cheng & Ruihua Liu, 2024. "Research on the Performance Path of Industrial Green Total Factor Productivity in the Context of High-Quality Development—Based on Fuzzy-Set Qualitative Comparative Analysis," Sustainability, MDPI, vol. 16(1), pages 1-17, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ruomeng Zhou & Yunsheng Zhang, 2023. "Measurement of Urban Green Total Factor Productivity and Analysis of Its Temporal and Spatial Evolution in China," Sustainability, MDPI, vol. 15(12), pages 1-32, June.
    2. Huaping Zhang & Yue Dong, 2022. "Measurement and Spatial Correlations of Green Total Factor Productivities of Chinese Provinces," Sustainability, MDPI, vol. 14(9), pages 1-15, April.
    3. Meiling Wang & Silu Pang & Ikram Hmani & Ilham Hmani & Cunfang Li & Zhengxia He, 2021. "Towards sustainable development: How does technological innovation drive the increase in green total factor productivity?," Sustainable Development, John Wiley & Sons, Ltd., vol. 29(1), pages 217-227, January.
    4. Gao, Yuning & Zhang, Meichen & Zheng, Jinghai, 2021. "Accounting and determinants analysis of China's provincial total factor productivity considering carbon emissions," China Economic Review, Elsevier, vol. 65(C).
    5. Qingyan Zhu, 2023. "How Will the Relationship between Technological Innovation and Green Total Factor Productivity Change under the Influence of Service-Oriented Upgrading of Industrial Structure?," Sustainability, MDPI, vol. 15(6), pages 1-16, March.
    6. Yujian Jin & Lihong Yu & Yan Wang, 2022. "Green Total Factor Productivity and Its Saving Effect on the Green Factor in China’s Strategic Minerals Industry from 1998–2017," IJERPH, MDPI, vol. 19(22), pages 1-20, November.
    7. Chen, Xiang & Chen, Yong & Huang, Wenli & Zhang, Xuping, 2023. "A new Malmquist-type green total factor productivity measure: An application to China," Energy Economics, Elsevier, vol. 117(C).
    8. Gao, Kang & Yuan, Yijun, 2022. "Spatiotemporal pattern assessment of China’s industrial green productivity and its spatial drivers: Evidence from city-level data over 2000–2017," Applied Energy, Elsevier, vol. 307(C).
    9. Xi Qin & Xiaoling Wang & Yusen Xu & Yawen Wei, 2019. "Exploring Driving Forces of Green Growth: Empirical Analysis on China’s Iron and Steel Industry," Sustainability, MDPI, vol. 11(4), pages 1-11, February.
    10. Tian, Ying & Pang, Jun, 2023. "What causes dynamic change of green technology progress: Convergence analysis based on industrial restructuring and environmental regulation," Structural Change and Economic Dynamics, Elsevier, vol. 66(C), pages 189-199.
    11. Xi Zhang & Rui Li & Jinglei Zhang, 2022. "Understanding the Green Total Factor Productivity of Manufacturing Industry in China: Analysis Based on the Super-SBM Model with Undesirable Outputs," Sustainability, MDPI, vol. 14(15), pages 1-16, July.
    12. Xiaoli Hao & Xinhui Wang & Haitao Wu & Yu Hao, 2023. "Path to sustainable development: Does digital economy matter in manufacturing green total factor productivity?," Sustainable Development, John Wiley & Sons, Ltd., vol. 31(1), pages 360-378, February.
    13. Talat S. Genc & Stephen Kosempel, 2023. "Energy Transition and the Economy: A Review Article," Energies, MDPI, vol. 16(7), pages 1-26, March.
    14. Cheng, Zhonghua & Jin, Wei, 2022. "Agglomeration economy and the growth of green total-factor productivity in Chinese Industry," Socio-Economic Planning Sciences, Elsevier, vol. 83(C).
    15. Fang, Chuandi & Cheng, Jinhua & Zhu, Yongguang & Chen, Jiahao & Peng, Xinjie, 2021. "Green total factor productivity of extractive industries in China: An explanation from technology heterogeneity," Resources Policy, Elsevier, vol. 70(C).
    16. Zhang, Bingbing & Yu, Lan & Sun, Chuanwang, 2022. "How does urban environmental legislation guide the green transition of enterprises? Based on the perspective of enterprises' green total factor productivity," Energy Economics, Elsevier, vol. 110(C).
    17. Yuanxin Peng & Zhuo Chen & Jay Lee, 2020. "Dynamic Convergence of Green Total Factor Productivity in Chinese Cities," Sustainability, MDPI, vol. 12(12), pages 1-18, June.
    18. Rui Jiang & Chunxue Liu & Xiaowei Liu & Shuai Zhang, 2022. "Space–Time Effect of Green Total Factor Productivity in Mineral Resources Industry in China: Based on Space–Time Semivariogram and SPVAR Model," Sustainability, MDPI, vol. 14(14), pages 1-16, July.
    19. Ran, Qiying & Yang, Xiaodong & Yan, Hongchuan & Xu, Yang & Cao, Jianhong, 2023. "Natural resource consumption and industrial green transformation: Does the digital economy matter?," Resources Policy, Elsevier, vol. 81(C).
    20. Yakun Wang & Jingli Jiang & Dongqing Wang & Xinshang You, 2022. "Can Mechanization Promote Green Agricultural Production? An Empirical Analysis of Maize Production in China," Sustainability, MDPI, vol. 15(1), pages 1-24, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:21:p:14082-:d:956595. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.