IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v298y2021ics0306261921005985.html
   My bibliography  Save this article

Drivers of consumers’ change to an energy-efficient heating appliance (EEHA) in households: Evidence from five European countries

Author

Listed:
  • Neves, Catarina
  • Oliveira, Tiago

Abstract

Residential buildings are significant contributors to global energy consumption. Hence, numerous articles have studied occupants’ energy behaviors to promote households’ change toward energy efficiency. However, the drivers of these behaviors, analyzed in a unified view of several perspectives, have not been fully explored in the literature. Moreover, the intention to adopt an energy-efficient heating appliance (EEHA) has never been investigated in order to understand what drives people to change their current appliances. To fill this gap, our work gathers six relevant contexts (triggers, barriers, engagement, house characteristics, co-benefits, and communication channels) to predict behavior change (both attitude on heating equipment use and intention to change to an EEHA). We tested our model based on a sample of 1611 observations collected in five European countries, using structural equation modeling. Our work reveals the significance of energy efficiency and labeling as motivations, and operation and maintenance as barriers. Co-benefits and communication channels also greatly affect consumer behavior intention, namely organizational and web media channels. Our results also emphasize the importance of consumer engagement in the topic of energy, being the strongest effect on behavior intention. These findings have practical implications for both energy and governmental organizations to increase households’ energy efficiency.

Suggested Citation

  • Neves, Catarina & Oliveira, Tiago, 2021. "Drivers of consumers’ change to an energy-efficient heating appliance (EEHA) in households: Evidence from five European countries," Applied Energy, Elsevier, vol. 298(C).
  • Handle: RePEc:eee:appene:v:298:y:2021:i:c:s0306261921005985
    DOI: 10.1016/j.apenergy.2021.117165
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261921005985
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2021.117165?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Michelsen, Carl Christian & Madlener, Reinhard, 2012. "Homeowners' preferences for adopting innovative residential heating systems: A discrete choice analysis for Germany," Energy Economics, Elsevier, vol. 34(5), pages 1271-1283.
    2. Kelly, S., 2011. "Do homes that are more energy efficient consume less energy?: A structural equation model for England's residential sector," Cambridge Working Papers in Economics 1139, Faculty of Economics, University of Cambridge.
    3. Sopha, Bertha Maya & Klöckner, Christian A., 2011. "Psychological factors in the diffusion of sustainable technology: A study of Norwegian households' adoption of wood pellet heating," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(6), pages 2756-2765, August.
    4. Achtnicht, Martin & Madlener, Reinhard, 2014. "Factors influencing German house owners' preferences on energy retrofits," Energy Policy, Elsevier, vol. 68(C), pages 254-263.
    5. Baldini, Mattia & Trivella, Alessio & Wente, Jordan William, 2018. "The impact of socioeconomic and behavioural factors for purchasing energy efficient household appliances: A case study for Denmark," Energy Policy, Elsevier, vol. 120(C), pages 503-513.
    6. Kelly, Scott, 2011. "Do homes that are more energy efficient consume less energy?: A structural equation model of the English residential sector," Energy, Elsevier, vol. 36(9), pages 5610-5620.
    7. Franceschinis, Cristiano & Thiene, Mara & Scarpa, Riccardo & Rose, John & Moretto, Michele & Cavalli, Raffaele, 2017. "Adoption of renewable heating systems: An empirical test of the diffusion of innovation theory," Energy, Elsevier, vol. 125(C), pages 313-326.
    8. John Mingers, 2001. "Combining IS Research Methods: Towards a Pluralist Methodology," Information Systems Research, INFORMS, vol. 12(3), pages 240-259, September.
    9. Banfi, Silvia & Farsi, Mehdi & Filippini, Massimo & Jakob, Martin, 2008. "Willingness to pay for energy-saving measures in residential buildings," Energy Economics, Elsevier, vol. 30(2), pages 503-516, March.
    10. Steg, Linda, 2008. "Promoting household energy conservation," Energy Policy, Elsevier, vol. 36(12), pages 4449-4453, December.
    11. Yohanis, Yigzaw Goshu & Mondol, Jayanta Deb, 2010. "Annual variations of temperature in a sample of UK dwellings," Applied Energy, Elsevier, vol. 87(2), pages 681-690, February.
    12. Heutel, Garth, 2019. "Prospect theory and energy efficiency," Journal of Environmental Economics and Management, Elsevier, vol. 96(C), pages 236-254.
    13. Mills, Bradford & Schleich, Joachim, 2012. "Residential energy-efficient technology adoption, energy conservation, knowledge, and attitudes: An analysis of European countries," Energy Policy, Elsevier, vol. 49(C), pages 616-628.
    14. Ek, Kristina & Söderholm, Patrik, 2010. "The devil is in the details: Household electricity saving behavior and the role of information," Energy Policy, Elsevier, vol. 38(3), pages 1578-1587, March.
    15. Braun, Frauke G., 2010. "Determinants of households' space heating type: A discrete choice analysis for German households," Energy Policy, Elsevier, vol. 38(10), pages 5493-5503, October.
    16. B. Howarth, Richard & Haddad, Brent M. & Paton, Bruce, 2000. "The economics of energy efficiency: insights from voluntary participation programs," Energy Policy, Elsevier, vol. 28(6-7), pages 477-486, June.
    17. Martinopoulos, Georgios & Papakostas, Konstantinos T. & Papadopoulos, Agis M., 2018. "A comparative review of heating systems in EU countries, based on efficiency and fuel cost," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 687-699.
    18. Brounen, Dirk & Kok, Nils & Quigley, John M., 2013. "Energy literacy, awareness, and conservation behavior of residential households," Energy Economics, Elsevier, vol. 38(C), pages 42-50.
    19. Scott Kelly, 2011. "Do homes that are more energy efficient consume less energy?: A structural equation model for England's residential sector," Working Papers EPRG 1117, Energy Policy Research Group, Cambridge Judge Business School, University of Cambridge.
    20. Gaspar, Rui & Antunes, Dalila, 2011. "Energy efficiency and appliance purchases in Europe: Consumer profiles and choice determinants," Energy Policy, Elsevier, vol. 39(11), pages 7335-7346.
    21. Mills, Bradford F. & Schleich, Joachim, 2009. "Profits or preferences? Assessing the adoption of residential solar thermal technologies," Energy Policy, Elsevier, vol. 37(10), pages 4145-4154, October.
    22. Katharina Sammer & Rolf Wüstenhagen, 2006. "The influence of eco‐labelling on consumer behaviour – results of a discrete choice analysis for washing machines," Business Strategy and the Environment, Wiley Blackwell, vol. 15(3), pages 185-199, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xu, Xiaoxiao & Yu, Hao & Sun, Qiuwen & Tam, Vivian W.Y., 2023. "A critical review of occupant energy consumption behavior in buildings: How we got here, where we are, and where we are headed," Renewable and Sustainable Energy Reviews, Elsevier, vol. 182(C).
    2. Gordon, Joel A. & Balta-Ozkan, Nazmiye & Nabavi, Seyed Ali, 2023. "Price promises, trust deficits and energy justice: Public perceptions of hydrogen homes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
    3. Gao, Datong & Zhao, Bin & Kwan, Trevor Hocksun & Hao, Yong & Pei, Gang, 2022. "The spatial and temporal mismatch phenomenon in solar space heating applications: status and solutions," Applied Energy, Elsevier, vol. 321(C).
    4. Du, Feng & Yue, Hong & Zhang, Jiangfeng, 2023. "Influence of advertisement control to residential energy savings in large networks," Applied Energy, Elsevier, vol. 333(C).
    5. Diego Menegon & Daniela Lobosco & Leopoldo Micò & Joana Fernandes, 2021. "Labeling of Installed Heating Appliances in Residential Buildings: An Energy Labeling Methodology for Improving Consumers’ Awareness," Energies, MDPI, vol. 14(21), pages 1-17, October.
    6. Schlindwein, L.F. & Montalvo, C., 2023. "Energy citizenship: Accounting for the heterogeneity of human behaviours within energy transition," Energy Policy, Elsevier, vol. 180(C).
    7. Outcault, Sarah & Sanguinetti, Angela & Nelson, Leslie, 2022. "Technology characteristics that influence adoption of residential distributed energy resources: Adapting Rogers’ framework," Energy Policy, Elsevier, vol. 168(C).
    8. Ozarisoy, B. & Altan, H., 2022. "Significance of occupancy patterns and habitual household adaptive behaviour on home-energy performance of post-war social-housing estate in the South-eastern Mediterranean climate: Energy policy desi," Energy, Elsevier, vol. 244(PB).
    9. Neves, C. & Oliveira, T. & Santini, F., 2022. "Sustainable technologies adoption research: A weight and meta-analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 165(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Neves, Joana & Oliveira, Tiago, 2021. "Understanding energy-efficient heating appliance behavior change: The moderating impact of the green self-identity," Energy, Elsevier, vol. 225(C).
    2. Curtis, John & McCoy, Daire & Aravena, Claudia, 2018. "Heating system upgrades: The role of knowledge, socio-demographics, building attributes and energy infrastructure," Energy Policy, Elsevier, vol. 120(C), pages 183-196.
    3. Ortega-Izquierdo, Margarita & Paredes-Salvador, Andrés & Montoya-Rasero, Carlos, 2019. "Analysis of the decision making factors for heating and cooling systems in Spanish households," Renewable and Sustainable Energy Reviews, Elsevier, vol. 100(C), pages 175-185.
    4. Henningsen, Geraldine & Wiese, Catharina, 2019. "Do Household Characteristics Really Matter? A Meta-Analysis on the Determinants of Households’ Energy-Efficiency Investments," MPRA Paper 101701, University Library of Munich, Germany.
    5. Schleich, Joachim & Gassmann, Xavier & Faure, Corinne & Meissner, Thomas, 2016. "Making the implicit explicit: A look inside the implicit discount rate," Energy Policy, Elsevier, vol. 97(C), pages 321-331.
    6. Baldini, Mattia & Trivella, Alessio & Wente, Jordan William, 2018. "The impact of socioeconomic and behavioural factors for purchasing energy efficient household appliances: A case study for Denmark," Energy Policy, Elsevier, vol. 120(C), pages 503-513.
    7. Curtis, John & Tovar, Miguel Angel & Grilli, Gianluca, 2020. "Access to and consumption of natural gas: Spatial and socio-demographic drivers," Energy Policy, Elsevier, vol. 143(C).
    8. Feser, Daniel & Bizer, Kilian & Rudolph-Cleff, Annette & Schulze, Joachim, 2016. "Energy audits in a private firm environment: Energy efficiency consultants' cost calculation for innovative technologies in the housing sector," University of Göttingen Working Papers in Economics 275, University of Goettingen, Department of Economics.
    9. Satre-Meloy, Aven, 2019. "Investigating structural and occupant drivers of annual residential electricity consumption using regularization in regression models," Energy, Elsevier, vol. 174(C), pages 148-168.
    10. Ana-María Martínez-Llorens & Paloma Taltavull de La Paz & Raul-Tomas Mora-Garcia, 2020. "Effect of The Physical Characteristics of a Dwelling on Energy Consumption and Emissions: The Case of Castellón And Valencia (Spain)," Sustainability, MDPI, vol. 12(22), pages 1-20, November.
    11. Trotta, Gianluca, 2018. "Factors affecting energy-saving behaviours and energy efficiency investments in British households," Energy Policy, Elsevier, vol. 114(C), pages 529-539.
    12. Michelsen, Carl Christian & Madlener, Reinhard, 2011. "Homeowners' Motivation to Adopt a Residential Heating System: A Principal-Component Analysis," FCN Working Papers 17/2011, E.ON Energy Research Center, Future Energy Consumer Needs and Behavior (FCN), revised Jan 2013.
    13. Hårsman, Björn & Wahlström, Marie H., 2014. "Residential energy consumption and conservation," Working Paper Series in Economics and Institutions of Innovation 388, Royal Institute of Technology, CESIS - Centre of Excellence for Science and Innovation Studies.
    14. Michelsen, Carl Christian & Madlener, Reinhard, 2013. "Motivational factors influencing the homeowners’ decisions between residential heating systems: An empirical analysis for Germany," Energy Policy, Elsevier, vol. 57(C), pages 221-233.
    15. Karytsas, Spyridon & Theodoropoulou, Helen, 2014. "Public awareness and willingness to adopt ground source heat pumps for domestic heating and cooling," Renewable and Sustainable Energy Reviews, Elsevier, vol. 34(C), pages 49-57.
    16. Hecher, Maria & Hatzl, Stefanie & Knoeri, Christof & Posch, Alfred, 2017. "The trigger matters: The decision-making process for heating systems in the residential building sector," Energy Policy, Elsevier, vol. 102(C), pages 288-306.
    17. Cardella, Eric & Ewing, Brad & Williams, Ryan Blake, 2018. "Green is Good – The Impact of Information Nudges on the Adoption of Voluntary Green Power Plans," 2018 Annual Meeting, February 2-6, 2018, Jacksonville, Florida 266583, Southern Agricultural Economics Association.
    18. Fischbacher, Urs & Schudy, Simeon & Teyssier, Sabrina, 2021. "Heterogeneous preferences and investments in energy saving measures," Resource and Energy Economics, Elsevier, vol. 63(C).
    19. Michelsen, Carl Christian & Madlener, Reinhard, 2016. "Switching from fossil fuel to renewables in residential heating systems: An empirical study of homeowners' decisions in Germany," Energy Policy, Elsevier, vol. 89(C), pages 95-105.
    20. Stefano Ceolotto & Eleanor Denny, 2021. "Putting a new 'spin' on energy labels: measuring the impact of reframing energy efficiency on tumble dryer choices in a multi-country experiment," Trinity Economics Papers tep1521, Trinity College Dublin, Department of Economics.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:298:y:2021:i:c:s0306261921005985. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.