IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v257y2020ics0306261919317143.html
   My bibliography  Save this article

Recent progress of carbon dots and carbon nanotubes applied in oxygen reduction reaction of fuel cell for transportation

Author

Listed:
  • Mohideen, Mohamedazeem M.
  • Liu, Yong
  • Ramakrishna, Seeram

Abstract

Proton exchange membrane fuel cell (PEMFC) is receiving strong attention in sustainable energy conversion and storage systems. Its high efficiency, low emission, and environmental friendliness enable hydrogen fuel cell electric vehicle (FCEV) for day to day transportation. High costs, limited durability and inefficient oxygen reduction reaction (ORR) have been identified as key challenges for the widespread commercial success of fuel cell transportation vehicles. ORR is constrained by slow kinetics of cathode catalyst and must be improved by suitable nanoengineering of low-cost electrocatalysts. Replacing platinum group metals with carbon-based non-precious metal is a promising solution. Recently, advances in zero-dimensional carbon dots are showing promise for challenging energy-oriented issues. In addition, the one-dimensional carbon nanotubes are also found suitable for efficient ORR. However, carbon-based electrocatalyst showing improved performance in electrochemical measurements are not up to the expectation in the practical application of FCEV. This review highlights the advancement and future opportunities for improving performance of ORR using carbon dots and carbon nanotubes nanostructures. We discussed the application of carbon dots and carbon nanotubes in the fuel cell. Their corresponding electrochemical performance was presented. Followed by, practical application of carbon nanotubes in the real operating condition of PEMFC was discussed. Finally, the current status and future target of FCEV were comprehensively addressed.

Suggested Citation

  • Mohideen, Mohamedazeem M. & Liu, Yong & Ramakrishna, Seeram, 2020. "Recent progress of carbon dots and carbon nanotubes applied in oxygen reduction reaction of fuel cell for transportation," Applied Energy, Elsevier, vol. 257(C).
  • Handle: RePEc:eee:appene:v:257:y:2020:i:c:s0306261919317143
    DOI: 10.1016/j.apenergy.2019.114027
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261919317143
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2019.114027?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mark K. Debe, 2012. "Electrocatalyst approaches and challenges for automotive fuel cells," Nature, Nature, vol. 486(7401), pages 43-51, June.
    2. Félix-Navarro, R.M. & Beltrán-Gastélum, M. & Reynoso-Soto, E.A. & Paraguay-Delgado, F. & Alonso-Nuñez, G. & Flores-Hernández, J.R., 2016. "Bimetallic Pt–Au nanoparticles supported on multi-wall carbon nanotubes as electrocatalysts for oxygen reduction," Renewable Energy, Elsevier, vol. 87(P1), pages 31-41.
    3. Edwards, P.P. & Kuznetsov, V.L. & David, W.I.F. & Brandon, N.P., 2008. "Hydrogen and fuel cells: Towards a sustainable energy future," Energy Policy, Elsevier, vol. 36(12), pages 4356-4362, December.
    4. Bizon, Nicu, 2019. "Hybrid power sources (HPSs) for space applications: Analysis of PEMFC/Battery/SMES HPS under unknown load containing pulses," Renewable and Sustainable Energy Reviews, Elsevier, vol. 105(C), pages 14-37.
    5. Rivera-Lugo, Yazmín Y. & Salazar-Gastélum, Moisés I. & López-Rosas, Deisly M. & Reynoso-Soto, Edgar A. & Pérez-Sicairos, Sergio & Velraj, Samgopiraj & Flores-Hernández, José R. & Félix-Navarro, Rosa M, 2018. "Effect of template, reaction time and platinum concentration in the synthesis of PtCu/CNT catalyst for PEMFC applications," Energy, Elsevier, vol. 148(C), pages 561-570.
    6. Shin, Jungwoo & Hwang, Won-Sik & Choi, Hyundo, 2019. "Can hydrogen fuel vehicles be a sustainable alternative on vehicle market?: Comparison of electric and hydrogen fuel cell vehicles," Technological Forecasting and Social Change, Elsevier, vol. 143(C), pages 239-248.
    7. Li, Min & Mu, Boyuan, 2019. "Effect of different dimensional carbon materials on the properties and application of phase change materials: A review," Applied Energy, Elsevier, vol. 242(C), pages 695-715.
    8. Jeff Tollefson, 2010. "Hydrogen vehicles: Fuel of the future?," Nature, Nature, vol. 464(7293), pages 1262-1264, April.
    9. Wang, Yun & Chen, Ken S. & Mishler, Jeffrey & Cho, Sung Chan & Adroher, Xavier Cordobes, 2011. "A review of polymer electrolyte membrane fuel cells: Technology, applications, and needs on fundamental research," Applied Energy, Elsevier, vol. 88(4), pages 981-1007, April.
    10. Apostolou, D. & Xydis, G., 2019. "A literature review on hydrogen refuelling stations and infrastructure. Current status and future prospects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 113(C), pages 1-1.
    11. Beltrán-Gastélum, M. & Salazar-Gastélum, M.I. & Félix-Navarro, R.M. & Pérez-Sicairos, S. & Reynoso-Soto, E.A. & Lin, S.W. & Flores-Hernández, J.R. & Romero-Castañón, T. & Albarrán-Sánchez, I.L. & Para, 2016. "Evaluation of PtAu/MWCNT (Multiwalled Carbon Nanotubes) electrocatalyst performance as cathode of a proton exchange membrane fuel cell," Energy, Elsevier, vol. 109(C), pages 446-455.
    12. Kurnia, Jundika C. & Sasmito, Agus P. & Shamim, Tariq, 2019. "Advances in proton exchange membrane fuel cell with dead-end anode operation: A review," Applied Energy, Elsevier, vol. 252(C), pages 1-1.
    13. Sopian, Kamaruzzaman & Wan Daud, Wan Ramli, 2006. "Challenges and future developments in proton exchange membrane fuel cells," Renewable Energy, Elsevier, vol. 31(5), pages 719-727.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhou, Yu & Chen, Ben & Meng, Kai & Zhou, Haoran & Chen, Wenshang & Zhang, Ning & Deng, Qihao & Yang, Guanghua & Tu, Zhengkai, 2023. "Optimal design of a cathode flow field for performance enhancement of PEM fuel cell," Applied Energy, Elsevier, vol. 343(C).
    2. Mohammadi, Amir & Babaei, Reza & Jianu, Ofelia A., 2023. "Feasibility analysis of sustainable hydrogen production for heavy-duty applications: Case study of highway 401," Energy, Elsevier, vol. 282(C).
    3. Fan, Yingzheng & Qian, Fengyu & Huang, Yuankai & Sifat, Iram & Zhang, Chengwu & Depasquale, Alex & Wang, Lei & Li, Baikun, 2021. "Miniature microbial fuel cells integrated with triggered power management systems to power wastewater sensors in an uninterrupted mode," Applied Energy, Elsevier, vol. 302(C).
    4. Bai, Xingying & Luo, Lizhong & Huang, Bi & Jian, Qifei & Cheng, Zongyi, 2022. "Performance improvement of proton exchange membrane fuel cell stack by dual-path hydrogen supply," Energy, Elsevier, vol. 246(C).
    5. Bai, Xingying & Luo, Lizhong & Huang, Bi & Huang, Zhe & Jian, Qifei, 2021. "Flow characteristics analysis for multi-path hydrogen supply within proton exchange membrane fuel cell stack," Applied Energy, Elsevier, vol. 301(C).
    6. Mohideen, Mohamedazeem M. & Subramanian, Balachandran & Sun, Jingyi & Ge, Jing & Guo, Han & Radhamani, Adiyodi Veettil & Ramakrishna, Seeram & Liu, Yong, 2023. "Techno-economic analysis of different shades of renewable and non-renewable energy-based hydrogen for fuel cell electric vehicles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 174(C).
    7. A.G. Olabi & Tabbi Wilberforce & Enas Taha Sayed & Khaled Elsaid & Mohammad Ali Abdelkareem, 2020. "Prospects of Fuel Cell Combined Heat and Power Systems," Energies, MDPI, vol. 13(16), pages 1-20, August.
    8. Pan, Lyuming & Chen, Dongfang & Pei, Pucheng & Huang, Shangwei & Ren, Peng & Song, Xin, 2021. "A novel structural design of air cathodes expanding three-phase reaction interfaces for zinc-air batteries," Applied Energy, Elsevier, vol. 290(C).
    9. Badawy, Tawfik & Mansour, Mohy S. & Daabo, Ahmed M. & Abdel Aziz, Mostafa M. & Othman, Abdelrahman A. & Barsoum, Fady & Basouni, Mohamed & Hussien, Mohamed & Ghareeb, Mourad & Hamza, Mahmoud & Wang, C, 2021. "Selection of second-generation crop for biodiesel extraction and testing its impact with nano additives on diesel engine performance and emissions," Energy, Elsevier, vol. 237(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Carlo Cunanan & Manh-Kien Tran & Youngwoo Lee & Shinghei Kwok & Vincent Leung & Michael Fowler, 2021. "A Review of Heavy-Duty Vehicle Powertrain Technologies: Diesel Engine Vehicles, Battery Electric Vehicles, and Hydrogen Fuel Cell Electric Vehicles," Clean Technol., MDPI, vol. 3(2), pages 1-16, June.
    2. Bhuvanendran, Narayanamoorthy & Ravichandran, Sabarinathan & Jayaseelan, Santhana Sivabalan & Xu, Qian & Khotseng, Lindiwe & Su, Huaneng, 2020. "Improved bi-functional oxygen electrocatalytic performance of Pt–Ir alloy nanoparticles embedded on MWCNT with Pt-enriched surfaces," Energy, Elsevier, vol. 211(C).
    3. Beltrán-Gastélum, M. & Salazar-Gastélum, M.I. & Flores-Hernández, J.R. & Botte, G.G. & Pérez-Sicairos, S. & Romero-Castañon, T. & Reynoso-Soto, E. & Félix-Navarro, R.M., 2019. "Pt-Au nanoparticles on graphene for oxygen reduction reaction: Stability and performance on proton exchange membrane fuel cell," Energy, Elsevier, vol. 181(C), pages 1225-1234.
    4. Nithin Isaac & Akshay Kumar Saha, 2022. "Predicting Vehicle Refuelling Trips through Generalised Poisson Modelling," Energies, MDPI, vol. 15(18), pages 1-18, September.
    5. Pei, Pucheng & Wu, Ziyao & Li, Yuehua & Jia, Xiaoning & Chen, Dongfang & Huang, Shangwei, 2018. "Improved methods to measure hydrogen crossover current in proton exchange membrane fuel cell," Applied Energy, Elsevier, vol. 215(C), pages 338-347.
    6. Kim, Sung Han & Miesse, Craig M. & Lee, Hee Bum & Chang, Ik Whang & Hwang, Yong Sheen & Jang, Jae Hyuk & Cha, Suk Won, 2014. "Ultra compact direct hydrogen fuel cell prototype using a metal hydride hydrogen storage tank for a mobile phone," Applied Energy, Elsevier, vol. 134(C), pages 382-391.
    7. Sagar Roy & Smruti Ragunath, 2018. "Emerging Membrane Technologies for Water and Energy Sustainability: Future Prospects, Constraints and Challenges," Energies, MDPI, vol. 11(11), pages 1-32, November.
    8. Lucian-Ioan Dulău, 2023. "CO 2 Emissions of Battery Electric Vehicles and Hydrogen Fuel Cell Vehicles," Clean Technol., MDPI, vol. 5(2), pages 1-17, June.
    9. Samir De, Biswajit & Cunningham, Joshua & Khare, Neeraj & Luo, Jing-Li & Elias, Anastasia & Basu, Suddhasatwa, 2022. "Hydrogen generation and utilization in a two-phase flow membraneless microfluidic electrolyzer-fuel cell tandem operation for micropower application," Applied Energy, Elsevier, vol. 305(C).
    10. Shantanu Pardhi & Sajib Chakraborty & Dai-Duong Tran & Mohamed El Baghdadi & Steven Wilkins & Omar Hegazy, 2022. "A Review of Fuel Cell Powertrains for Long-Haul Heavy-Duty Vehicles: Technology, Hydrogen, Energy and Thermal Management Solutions," Energies, MDPI, vol. 15(24), pages 1-55, December.
    11. Xing, Lei & Shi, Weidong & Su, Huaneng & Xu, Qian & Das, Prodip K. & Mao, Baodong & Scott, Keith, 2019. "Membrane electrode assemblies for PEM fuel cells: A review of functional graded design and optimization," Energy, Elsevier, vol. 177(C), pages 445-464.
    12. Xiao, Biao & Zhao, Junjie & Fan, Lixin & Liu, Yang & Chan, Siew Hwa & Tu, Zhengkai, 2022. "Effects of moisture dehumidification on the performance and degradation of a proton exchange membrane fuel cell," Energy, Elsevier, vol. 245(C).
    13. Díaz, Manuel Antonio & Iranzo, Alfredo & Rosa, Felipe & Isorna, Fernando & López, Eduardo & Bolivar, Juan Pedro, 2015. "Effect of carbon dioxide on the contamination of low temperature and high temperature PEM (polymer electrolyte membrane) fuel cells. Influence of temperature, relative humidity and analysis of regener," Energy, Elsevier, vol. 90(P1), pages 299-309.
    14. Dutta, Kingshuk & Das, Suparna & Kumar, Piyush & Kundu, Patit Paban, 2014. "Polymer electrolyte membrane with high selectivity ratio for direct methanol fuel cells: A preliminary study based on blends of partially sulfonated polymers polyaniline and PVdF-co-HFP," Applied Energy, Elsevier, vol. 118(C), pages 183-191.
    15. Noor H. Jawad & Ali Amer Yahya & Ali R. Al-Shathr & Hussein G. Salih & Khalid T. Rashid & Saad Al-Saadi & Adnan A. AbdulRazak & Issam K. Salih & Adel Zrelli & Qusay F. Alsalhy, 2022. "Fuel Cell Types, Properties of Membrane, and Operating Conditions: A Review," Sustainability, MDPI, vol. 14(21), pages 1-48, November.
    16. Seok Hee Lee & Sung Pil Woo & Nitul Kakati & Dong-Joo Kim & Young Soo Yoon, 2018. "A Comprehensive Review of Nanomaterials Developed Using Electrophoresis Process for High-Efficiency Energy Conversion and Storage Systems," Energies, MDPI, vol. 11(11), pages 1-81, November.
    17. Zhang, Jikai & Wang, Changjian & Zhang, Aifeng, 2022. "Experimental study on temperature and performance of an open-cathode PEMFC stack under thermal radiation environment," Applied Energy, Elsevier, vol. 311(C).
    18. Wang, Yang & Luo, Hui & Li, Guang & Jiang, Jianming, 2016. "Highly active platinum electrocatalyst towards oxygen reduction reaction in renewable energy generations of proton exchange membrane fuel cells," Applied Energy, Elsevier, vol. 173(C), pages 59-66.
    19. Jiajun Zhao & Cehuang Fu & Ke Ye & Zheng Liang & Fangling Jiang & Shuiyun Shen & Xiaoran Zhao & Lu Ma & Zulipiya Shadike & Xiaoming Wang & Junliang Zhang & Kun Jiang, 2022. "Manipulating the oxygen reduction reaction pathway on Pt-coordinated motifs," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    20. Isaac, N. & Saha, A.K., 2021. "Analysis of refueling behavior of hydrogen fuel vehicles through a stochastic model using Markov Chain Process," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:257:y:2020:i:c:s0306261919317143. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.