IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v221y2018icp605-645.html
   My bibliography  Save this article

The value of a dispatchable concentrating solar power transfer from Middle East and North Africa to Europe via point-to-point high voltage direct current lines

Author

Listed:
  • Hess, Denis

Abstract

Dispatchable solar power from concentrating solar thermal power plants (CSP) combined with thermal energy storage and co-firing option can provide energy according to demand. A transfer of such electricity from CSP in desert regions to distant consumer centres may therefore complement domestic energies. A detailed energy system modelling showing the benefit and drawback of CSP from Middle East and North Africa for Europe was not yet done. This paper closes the scientific knowledge gap applying an energy system model with a least-cost approach and detailed scenario analysis for the year 2050. Energy system analyses describe the effects of including and excluding a transfer of CSP from MENA to EU via a grid or via point-to-point high voltage direct current (HVDC) transmission lines. A multi-criteria assessment reveals the impact of such CSP-HVDC power plants on energy infrastructure, operational behaviour, cost and emission of the energy system. To evaluate national grid expansion, a new grid methodology is used as composed of transmission and distribution grid. The evaluation shows that power plant capacity, electrical storage and grid expansion as well as electrical curtailment can cause a beneficial impact when CSP-HVDC is used to supplement the energy portfolio in Europe.

Suggested Citation

  • Hess, Denis, 2018. "The value of a dispatchable concentrating solar power transfer from Middle East and North Africa to Europe via point-to-point high voltage direct current lines," Applied Energy, Elsevier, vol. 221(C), pages 605-645.
  • Handle: RePEc:eee:appene:v:221:y:2018:i:c:p:605-645
    DOI: 10.1016/j.apenergy.2018.03.159
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261918305038
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2018.03.159?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gils, Hans Christian, 2014. "Assessment of the theoretical demand response potential in Europe," Energy, Elsevier, vol. 67(C), pages 1-18.
    2. Haller, Markus & Ludig, Sylvie & Bauer, Nico, 2012. "Decarbonization scenarios for the EU and MENA power system: Considering spatial distribution and short term dynamics of renewable generation," Energy Policy, Elsevier, vol. 47(C), pages 282-290.
    3. Schaber, Katrin & Steinke, Florian & Hamacher, Thomas, 2012. "Transmission grid extensions for the integration of variable renewable energies in Europe: Who benefits where?," Energy Policy, Elsevier, vol. 43(C), pages 123-135.
    4. Steinbach, Armin, 2013. "Barriers and solutions for expansion of electricity grids—the German experience," Energy Policy, Elsevier, vol. 63(C), pages 224-229.
    5. Rubin, Edward S. & Chen, Chao & Rao, Anand B., 2007. "Cost and performance of fossil fuel power plants with CO2 capture and storage," Energy Policy, Elsevier, vol. 35(9), pages 4444-4454, September.
    6. Trieb, Franz & Schillings, Christoph & Pregger, Thomas & O'Sullivan, Marlene, 2012. "Solar electricity imports from the Middle East and North Africa to Europe," Energy Policy, Elsevier, vol. 42(C), pages 341-353.
    7. Neij, Lena, 2008. "Cost development of future technologies for power generation--A study based on experience curves and complementary bottom-up assessments," Energy Policy, Elsevier, vol. 36(6), pages 2200-2211, June.
    8. Gils, Hans Christian & Scholz, Yvonne & Pregger, Thomas & Luca de Tena, Diego & Heide, Dominik, 2017. "Integrated modelling of variable renewable energy-based power supply in Europe," Energy, Elsevier, vol. 123(C), pages 173-188.
    9. Fürsch, Michaela & Hagspiel, Simeon & Jägemann, Cosima & Nagl, Stephan & Lindenberger, Dietmar & Tröster, Eckehard, 2013. "The role of grid extensions in a cost-efficient transformation of the European electricity system until 2050," Applied Energy, Elsevier, vol. 104(C), pages 642-652.
    10. Joachim Nitsch & Thomas Pregger, 2013. "Kostenbilanz des Ausbaus erneuerbarer Energien in der Stromerzeugung bei unterschiedlichen Preisbildungen am Strommarkt," Vierteljahrshefte zur Wirtschaftsforschung / Quarterly Journal of Economic Research, DIW Berlin, German Institute for Economic Research, vol. 82(3), pages 45-59.
    11. Desideri, Umberto & Campana, Pietro Elia, 2014. "Analysis and comparison between a concentrating solar and a photovoltaic power plant," Applied Energy, Elsevier, vol. 113(C), pages 422-433.
    12. Domínguez, R. & Conejo, A.J. & Carrión, M., 2014. "Operation of a fully renewable electric energy system with CSP plants," Applied Energy, Elsevier, vol. 119(C), pages 417-430.
    13. Benasla, Mokhtar & Allaoui, Tayeb & Brahami, Mostefa & Denaï, Mouloud & Sood, Vijay K., 2018. "HVDC links between North Africa and Europe: Impacts and benefits on the dynamic performance of the European system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3981-3991.
    14. Stefan Pfenninger & Paul Gauché & Johan Lilliestam & Kerstin Damerau & Fabian Wagner & Anthony Patt, 2014. "Potential for concentrating solar power to provide baseload and dispatchable power," Nature Climate Change, Nature, vol. 4(8), pages 689-692, August.
    15. Gils, Hans Christian, 2016. "Economic potential for future demand response in Germany – Modeling approach and case study," Applied Energy, Elsevier, vol. 162(C), pages 401-415.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jiang, Sufan & Gao, Shan & Pan, Guangsheng & Liu, Yu & Wu, Chuanshen & Wang, Sicheng, 2021. "Congestion-aware robust security constrained unit commitment model for AC-DC grids," Applied Energy, Elsevier, vol. 304(C).
    2. Jiang, Sufan & Gao, Shan & Pan, Guangsheng & Zhao, Xin & Liu, Yu & Guo, Yasen & Wang, Sicheng, 2020. "A novel robust security constrained unit commitment model considering HVDC regulation," Applied Energy, Elsevier, vol. 278(C).
    3. Hansen, Kenneth & Breyer, Christian & Lund, Henrik, 2019. "Status and perspectives on 100% renewable energy systems," Energy, Elsevier, vol. 175(C), pages 471-480.
    4. Keyif, Enes & Hornung, Michael & Zhu, Wanshan, 2020. "Optimal configurations and operations of concentrating solar power plants under new market trends," Applied Energy, Elsevier, vol. 270(C).
    5. Dong-Hun Oh & Ho-Seung Kim & Bang-Wook Lee, 2021. "A Novel Diagnosis Method for Void Defects in HVDC Mass-Impregnated PPLP Cable Based on Partial Discharge Measurement," Energies, MDPI, vol. 14(8), pages 1-18, April.
    6. Alassi, Abdulrahman & Bañales, Santiago & Ellabban, Omar & Adam, Grain & MacIver, Callum, 2019. "HVDC Transmission: Technology Review, Market Trends and Future Outlook," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 530-554.
    7. Yu, Yanghao & Du, Ershun & Chen, Zhichao & Su, Yibo & Zhang, Xianfeng & Yang, Hongbin & Wang, Peng & Zhang, Ning, 2022. "Optimal portfolio of a 100% renewable energy generation base supported by concentrating solar power," Renewable and Sustainable Energy Reviews, Elsevier, vol. 170(C).
    8. Tobias Junne & Karl-Kiên Cao & Kim Kira Miskiw & Heidi Hottenroth & Tobias Naegler, 2021. "Considering Life Cycle Greenhouse Gas Emissions in Power System Expansion Planning for Europe and North Africa Using Multi-Objective Optimization," Energies, MDPI, vol. 14(5), pages 1-26, February.
    9. Zhou, Bo & Ai, Xiaomeng & Fang, Jiakun & Yao, Wei & Zuo, Wenping & Chen, Zhe & Wen, Jinyu, 2019. "Data-adaptive robust unit commitment in the hybrid AC/DC power system," Applied Energy, Elsevier, vol. 254(C).
    10. Mena, R. & Escobar, R. & Lorca, Á. & Negrete-Pincetic, M. & Olivares, D., 2019. "The impact of concentrated solar power in electric power systems: A Chilean case study," Applied Energy, Elsevier, vol. 235(C), pages 258-283.
    11. Prina, Matteo Giacomo & Casalicchio, Valeria & Kaldemeyer, Cord & Manzolini, Giampaolo & Moser, David & Wanitschke, Alexander & Sparber, Wolfram, 2020. "Multi-objective investment optimization for energy system models in high temporal and spatial resolution," Applied Energy, Elsevier, vol. 264(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hans Christian Gils & Sonja Simon & Rafael Soria, 2017. "100% Renewable Energy Supply for Brazil—The Role of Sector Coupling and Regional Development," Energies, MDPI, vol. 10(11), pages 1-22, November.
    2. Schmid, Eva & Knopf, Brigitte, 2015. "Quantifying the long-term economic benefits of European electricity system integration," Energy Policy, Elsevier, vol. 87(C), pages 260-269.
    3. Pietzcker, Robert Carl & Stetter, Daniel & Manger, Susanne & Luderer, Gunnar, 2014. "Using the sun to decarbonize the power sector: The economic potential of photovoltaics and concentrating solar power," Applied Energy, Elsevier, vol. 135(C), pages 704-720.
    4. Reichenberg, Lina & Hedenus, Fredrik & Odenberger, Mikael & Johnsson, Filip, 2018. "The marginal system LCOE of variable renewables – Evaluating high penetration levels of wind and solar in Europe," Energy, Elsevier, vol. 152(C), pages 914-924.
    5. Joachim Bertsch, & Tom Brown & Simeon Hagspiel & Lisa Just, 2017. "The relevance of grid expansion under zonal markets," The Energy Journal, International Association for Energy Economics, vol. 0(Number 5).
    6. Zerrahn, Alexander & Schill, Wolf-Peter, 2017. "Long-run power storage requirements for high shares of renewables: review and a new model," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 1518-1534.
    7. Brown, T. & Schlachtberger, D. & Kies, A. & Schramm, S. & Greiner, M., 2018. "Synergies of sector coupling and transmission reinforcement in a cost-optimised, highly renewable European energy system," Energy, Elsevier, vol. 160(C), pages 720-739.
    8. Ueckerdt, Falko & Pietzcker, Robert & Scholz, Yvonne & Stetter, Daniel & Giannousakis, Anastasis & Luderer, Gunnar, 2017. "Decarbonizing global power supply under region-specific consideration of challenges and options of integrating variable renewables in the REMIND model," Energy Economics, Elsevier, vol. 64(C), pages 665-684.
    9. Pietzcker, Robert C. & Ueckerdt, Falko & Carrara, Samuel & de Boer, Harmen Sytze & Després, Jacques & Fujimori, Shinichiro & Johnson, Nils & Kitous, Alban & Scholz, Yvonne & Sullivan, Patrick & Ludere, 2017. "System integration of wind and solar power in integrated assessment models: A cross-model evaluation of new approaches," Energy Economics, Elsevier, vol. 64(C), pages 583-599.
    10. Gils, Hans Christian & Simon, Sonja, 2017. "Carbon neutral archipelago – 100% renewable energy supply for the Canary Islands," Applied Energy, Elsevier, vol. 188(C), pages 342-355.
    11. Syranidis, Konstantinos & Robinius, Martin & Stolten, Detlef, 2018. "Control techniques and the modeling of electrical power flow across transmission networks," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3452-3467.
    12. Pleßmann, Guido & Blechinger, Philipp, 2017. "Outlook on South-East European power system until 2050: Least-cost decarbonization pathway meeting EU mitigation targets," Energy, Elsevier, vol. 137(C), pages 1041-1053.
    13. Gils, Hans Christian & Scholz, Yvonne & Pregger, Thomas & Luca de Tena, Diego & Heide, Dominik, 2017. "Integrated modelling of variable renewable energy-based power supply in Europe," Energy, Elsevier, vol. 123(C), pages 173-188.
    14. Zappa, William & Junginger, Martin & van den Broek, Machteld, 2019. "Is a 100% renewable European power system feasible by 2050?," Applied Energy, Elsevier, vol. 233, pages 1027-1050.
    15. Gerbaulet, Clemens & von Hirschhausen, Christian & Kemfert, Claudia & Lorenz, Casimir & Oei, Pao-Yu, 2019. "European electricity sector decarbonization under different levels of foresight," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 141, pages 973-987.
    16. Gils, Hans Christian & Gardian, Hedda & Kittel, Martin & Schill, Wolf-Peter & Zerrahn, Alexander & Murmann, Alexander & Launer, Jann & Fehler, Alexander & Gaumnitz, Felix & van Ouwerkerk, Jonas & Bußa, 2022. "Modeling flexibility in energy systems — comparison of power sector models based on simplified test cases," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    17. Anjo, João & Neves, Diana & Silva, Carlos & Shivakumar, Abhishek & Howells, Mark, 2018. "Modeling the long-term impact of demand response in energy planning: The Portuguese electric system case study," Energy, Elsevier, vol. 165(PA), pages 456-468.
    18. Hess, Denis & Wetzel, Manuel & Cao, Karl-Kiên, 2018. "Representing node-internal transmission and distribution grids in energy system models," Renewable Energy, Elsevier, vol. 119(C), pages 874-890.
    19. Rami David Orejon-Sanchez & Jose Ramon Andres-Diaz & Alfonso Gago-Calderon, 2021. "Autonomous Photovoltaic LED Urban Street Lighting: Technical, Economic, and Social Viability Analysis Based on a Case Study," Sustainability, MDPI, vol. 13(21), pages 1-17, October.
    20. Zhang, Xiaochun & Ma, Chun & Song, Xia & Zhou, Yuyu & Chen, Weiping, 2016. "The impacts of wind technology advancement on future global energy," Applied Energy, Elsevier, vol. 184(C), pages 1033-1037.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:221:y:2018:i:c:p:605-645. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.