IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v220y2018icp154-163.html
   My bibliography  Save this article

A novel method based on numerical fitting for oil price trend forecasting

Author

Listed:
  • Zhao, Lu-Tao
  • Wang, Yi
  • Guo, Shi-Qiu
  • Zeng, Guan-Rong

Abstract

Crude oil plays an important role in various production processes throughout the world. Changes in oil prices affect economic development, social stability and the residents in a country. Based on a full consideration of the fluctuations in oil prices and discovering the future dynamic trend of oil prices from historical trend features, a vector trend forecasting method that defines the vector trend over a specified length of time and predicts future price trends of crude oil based on the vector trend series of historical crude oil prices is proposed. The core idea behind vector trend forecasting method is to construct the vector trend by using the parameters of a fitting function within a specified interval. Based on the previous linear regression, a variety of non-linear morphological features were selected for numerical fitting, avoiding unity in the price trend and stochastic factors that are difficult to solve in forecast price trends. Combined with an econometric model composed of simultaneous equations, making full use of the characteristic information of the historical vector trend makes the definition of the trend more reasonable and the prediction more accurate. The empirical results show that the percentage error of the fitted real oil price in the vector trend is less than 4%. At the same time, it is found that the numerical fitting result using exponential and quadratic functions are better than that with general linear regression. The forecasting error of the trend is no more than 5%, which is lower than the traditional forecasting accuracy of econometrics and statistical learning models. This study can provide suggestions for oil market investors to understand trends in oil prices and for their investment decision-making, and provide reference for policy makers to stabilize economic markets and people’s life.

Suggested Citation

  • Zhao, Lu-Tao & Wang, Yi & Guo, Shi-Qiu & Zeng, Guan-Rong, 2018. "A novel method based on numerical fitting for oil price trend forecasting," Applied Energy, Elsevier, vol. 220(C), pages 154-163.
  • Handle: RePEc:eee:appene:v:220:y:2018:i:c:p:154-163
    DOI: 10.1016/j.apenergy.2018.03.060
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261918303933
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2018.03.060?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ghassan, Hassan Belkacem & AlHajhoj, Hassan Rafdan, 2016. "Long run dynamic volatilities between OPEC and non-OPEC crude oil prices," Applied Energy, Elsevier, vol. 169(C), pages 384-394.
    2. Picciolo, Francesco & Papandreou, Andreas & Hubacek, Klaus & Ruzzenenti, Franco, 2017. "How crude oil prices shape the global division of labor," Applied Energy, Elsevier, vol. 189(C), pages 753-761.
    3. Huang, Paoyu & Ni, Yensen, 2017. "Board structure and stock price informativeness in terms of moving average rules," The Quarterly Review of Economics and Finance, Elsevier, vol. 63(C), pages 161-169.
    4. Zhang, Yue-Jun & Zhang, Lu, 2015. "Interpreting the crude oil price movements: Evidence from the Markov regime switching model," Applied Energy, Elsevier, vol. 143(C), pages 96-109.
    5. Chiarella, Carl & He, Xue-Zhong & Hommes, Cars, 2006. "A dynamic analysis of moving average rules," Journal of Economic Dynamics and Control, Elsevier, vol. 30(9-10), pages 1729-1753.
    6. Rafiq, Shudhasattwa & Sgro, Pasquale & Apergis, Nicholas, 2016. "Asymmetric oil shocks and external balances of major oil exporting and importing countries," Energy Economics, Elsevier, vol. 56(C), pages 42-50.
    7. Qadan, Mahmoud & Nama, Hazar, 2018. "Investor sentiment and the price of oil," Energy Economics, Elsevier, vol. 69(C), pages 42-58.
    8. Tule, Moses K. & Ndako, Umar B. & Onipede, Samuel F., 2017. "Oil price shocks and volatility spillovers in the Nigerian sovereign bond market," Review of Financial Economics, Elsevier, vol. 35(C), pages 57-65.
    9. Guo, Jian-Feng & Ji, Qiang, 2013. "How does market concern derived from the Internet affect oil prices?," Applied Energy, Elsevier, vol. 112(C), pages 1536-1543.
    10. He, Kaijian & Yu, Lean & Lai, Kin Keung, 2012. "Crude oil price analysis and forecasting using wavelet decomposed ensemble model," Energy, Elsevier, vol. 46(1), pages 564-574.
    11. Miao, Hong & Ramchander, Sanjay & Wang, Tianyang & Yang, Dongxiao, 2017. "Influential factors in crude oil price forecasting," Energy Economics, Elsevier, vol. 68(C), pages 77-88.
    12. Chiroma, Haruna & Abdulkareem, Sameem & Herawan, Tutut, 2015. "Evolutionary Neural Network model for West Texas Intermediate crude oil price prediction," Applied Energy, Elsevier, vol. 142(C), pages 266-273.
    13. Wu, Binghui & Duan, Tingting, 2017. "The fractal feature and price trend in the gold future market at the Shanghai Futures Exchange (SFE)," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 474(C), pages 99-106.
    14. E, Jianwei & Bao, Yanling & Ye, Jimin, 2017. "Crude oil price analysis and forecasting based on variational mode decomposition and independent component analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 484(C), pages 412-427.
    15. Tsai, Sang-Bing & Xue, Youzhi & Zhang, Jianyu & Chen, Quan & Liu, Yubin & Zhou, Jie & Dong, Weiwei, 2017. "Models for forecasting growth trends in renewable energy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 1169-1178.
    16. Mostafa, Mohamed M. & El-Masry, Ahmed A., 2016. "Oil price forecasting using gene expression programming and artificial neural networks," Economic Modelling, Elsevier, vol. 54(C), pages 40-53.
    17. Wan, Jer-Yuh & Kao, Chung-Wei, 2015. "Interactions between oil and financial markets — Do conditions of financial stress matter?," Energy Economics, Elsevier, vol. 52(PA), pages 160-175.
    18. Noguera, José, 2013. "Oil prices: Breaks and trends," Energy Economics, Elsevier, vol. 37(C), pages 60-67.
    19. Li, Qiming & Cheng, Ke & Yang, Xiaoguang, 2017. "Response pattern of stock returns to international oil price shocks: From the perspective of China’s oil industrial chain," Applied Energy, Elsevier, vol. 185(P2), pages 1821-1831.
    20. Chen, Chun-Da & Cheng, Chiao-Ming & Demirer, Rıza, 2017. "Oil and stock market momentum," Energy Economics, Elsevier, vol. 68(C), pages 151-159.
    21. Shi, Xunpeng & Variam, Hari M.P., 2017. "East Asia’s gas-market failure and distinctive economics—A case study of low oil prices," Applied Energy, Elsevier, vol. 195(C), pages 800-809.
    22. Jiao, Jian-Ling & Han, Kuang-Yi & Wu, Gang & Li, Lan-Lan & Wei, Yi-Ming, 2014. "The effect of an SPR on the oil price in China: A system dynamics approach," Applied Energy, Elsevier, vol. 133(C), pages 363-373.
    23. Gao, Xiangyun & Fang, Wei & An, Feng & Wang, Yue, 2017. "Detecting method for crude oil price fluctuation mechanism under different periodic time series," Applied Energy, Elsevier, vol. 192(C), pages 201-212.
    24. Zhang, Jin-Liang & Zhang, Yue-Jun & Zhang, Lu, 2015. "A novel hybrid method for crude oil price forecasting," Energy Economics, Elsevier, vol. 49(C), pages 649-659.
    25. Cong, Rong-Gang & Wei, Yi-Ming & Jiao, Jian-Lin & Fan, Ying, 2008. "Relationships between oil price shocks and stock market: An empirical analysis from China," Energy Policy, Elsevier, vol. 36(9), pages 3544-3553, September.
    26. Lee, Chul-Yong & Huh, Sung-Yoon, 2017. "Forecasting the diffusion of renewable electricity considering the impact of policy and oil prices: The case of South Korea," Applied Energy, Elsevier, vol. 197(C), pages 29-39.
    27. de Souza e Silva, Edmundo G. & Legey, Luiz F.L. & de Souza e Silva, Edmundo A., 2010. "Forecasting oil price trends using wavelets and hidden Markov models," Energy Economics, Elsevier, vol. 32(6), pages 1507-1519, November.
    28. Kriechbaumer, Thomas & Angus, Andrew & Parsons, David & Rivas Casado, Monica, 2014. "An improved wavelet–ARIMA approach for forecasting metal prices," Resources Policy, Elsevier, vol. 39(C), pages 32-41.
    29. Naser, Hanan, 2016. "Estimating and forecasting the real prices of crude oil: A data rich model using a dynamic model averaging (DMA) approach," Energy Economics, Elsevier, vol. 56(C), pages 75-87.
    30. Fan, Liwei & Pan, Sijia & Li, Zimin & Li, Huiping, 2016. "An ICA-based support vector regression scheme for forecasting crude oil prices," Technological Forecasting and Social Change, Elsevier, vol. 112(C), pages 245-253.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yuanrong Wang & Yinsen Miao & Alexander CY Wong & Nikita P Granger & Christian Michler, 2023. "Domain-adapted Learning and Interpretability: DRL for Gas Trading," Papers 2301.08359, arXiv.org, revised Sep 2023.
    2. Li, Mingchen & Cheng, Zishu & Lin, Wencan & Wei, Yunjie & Wang, Shouyang, 2023. "What can be learned from the historical trend of crude oil prices? An ensemble approach for crude oil price forecasting," Energy Economics, Elsevier, vol. 123(C).
    3. Zhang, Pinyi & Ci, Bicong, 2020. "Deep belief network for gold price forecasting," Resources Policy, Elsevier, vol. 69(C).
    4. Qingqing Hu & Tinghui Li & Xue Li & Hao Dong, 2021. "Dynamic Characteristics of Oil Attributes and Their Market Effects," Energies, MDPI, vol. 14(13), pages 1-22, June.
    5. Karasu, Seçkin & Altan, Aytaç, 2022. "Crude oil time series prediction model based on LSTM network with chaotic Henry gas solubility optimization," Energy, Elsevier, vol. 242(C).
    6. Alameer, Zakaria & Elaziz, Mohamed Abd & Ewees, Ahmed A. & Ye, Haiwang & Jianhua, Zhang, 2019. "Forecasting gold price fluctuations using improved multilayer perceptron neural network and whale optimization algorithm," Resources Policy, Elsevier, vol. 61(C), pages 250-260.
    7. Abdollahi, Hooman & Ebrahimi, Seyed Babak, 2020. "A new hybrid model for forecasting Brent crude oil price," Energy, Elsevier, vol. 200(C).
    8. Lu-Tao Zhao & Guan-Rong Zeng & Ling-Yun He & Ya Meng, 2020. "Forecasting Short-Term Oil Price with a Generalised Pattern Matching Model Based on Empirical Genetic Algorithm," Computational Economics, Springer;Society for Computational Economics, vol. 55(4), pages 1151-1169, April.
    9. He, Huizi & Sun, Mei & Li, Xiuming & Mensah, Isaac Adjei, 2022. "A novel crude oil price trend prediction method: Machine learning classification algorithm based on multi-modal data features," Energy, Elsevier, vol. 244(PA).
    10. Öztunç Kaymak, Öznur & Kaymak, Yiğit, 2022. "Prediction of crude oil prices in COVID-19 outbreak using real data," Chaos, Solitons & Fractals, Elsevier, vol. 158(C).
    11. Yu, Hongchu & Fang, Zhixiang & Lu, Feng & Murray, Alan T. & Zhang, Hengcai & Peng, Peng & Mei, Qiang & Chen, Jinhai, 2019. "Impact of oil price fluctuations on tanker maritime network structure and traffic flow changes," Applied Energy, Elsevier, vol. 237(C), pages 390-403.
    12. Abdollahi, Hooman, 2020. "A novel hybrid model for forecasting crude oil price based on time series decomposition," Applied Energy, Elsevier, vol. 267(C).
    13. Tang, Ling & Zhang, Chengyuan & Li, Ling & Wang, Shouyang, 2020. "A multi-scale method for forecasting oil price with multi-factor search engine data," Applied Energy, Elsevier, vol. 257(C).
    14. Lu-Tao Zhao & Guan-Rong Zeng & Wen-Jing Wang & Zhi-Gang Zhang, 2019. "Forecasting Oil Price Using Web-based Sentiment Analysis," Energies, MDPI, vol. 12(22), pages 1-18, November.
    15. Zhao, Yuan & Zhang, Weiguo & Gong, Xue & Wang, Chao, 2021. "A novel method for online real-time forecasting of crude oil price," Applied Energy, Elsevier, vol. 303(C).
    16. Lu-Tao Zhao & Shun-Gang Wang & Zhi-Gang Zhang, 2020. "Oil Price Forecasting Using a Time-Varying Approach," Energies, MDPI, vol. 13(6), pages 1-16, March.
    17. Karasu, Seçkin & Altan, Aytaç & Bekiros, Stelios & Ahmad, Wasim, 2020. "A new forecasting model with wrapper-based feature selection approach using multi-objective optimization technique for chaotic crude oil time series," Energy, Elsevier, vol. 212(C).
    18. He, Mengxi & Zhang, Yaojie & Wen, Danyan & Wang, Yudong, 2021. "Forecasting crude oil prices: A scaled PCA approach," Energy Economics, Elsevier, vol. 97(C).
    19. Miljkovic, Dragan & Goetz, Cole, 2020. "The effects of futures markets on oil spot price volatility in regional US markets," Applied Energy, Elsevier, vol. 273(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chai, Jian & Xing, Li-Min & Zhou, Xiao-Yang & Zhang, Zhe George & Li, Jie-Xun, 2018. "Forecasting the WTI crude oil price by a hybrid-refined method," Energy Economics, Elsevier, vol. 71(C), pages 114-127.
    2. Lu-Tao Zhao & Shun-Gang Wang & Zhi-Gang Zhang, 2020. "Oil Price Forecasting Using a Time-Varying Approach," Energies, MDPI, vol. 13(6), pages 1-16, March.
    3. Li, Jinchao & Zhu, Shaowen & Wu, Qianqian, 2019. "Monthly crude oil spot price forecasting using variational mode decomposition," Energy Economics, Elsevier, vol. 83(C), pages 240-253.
    4. Petropoulos, Fotios & Apiletti, Daniele & Assimakopoulos, Vassilios & Babai, Mohamed Zied & Barrow, Devon K. & Ben Taieb, Souhaib & Bergmeir, Christoph & Bessa, Ricardo J. & Bijak, Jakub & Boylan, Joh, 2022. "Forecasting: theory and practice," International Journal of Forecasting, Elsevier, vol. 38(3), pages 705-871.
      • Fotios Petropoulos & Daniele Apiletti & Vassilios Assimakopoulos & Mohamed Zied Babai & Devon K. Barrow & Souhaib Ben Taieb & Christoph Bergmeir & Ricardo J. Bessa & Jakub Bijak & John E. Boylan & Jet, 2020. "Forecasting: theory and practice," Papers 2012.03854, arXiv.org, revised Jan 2022.
    5. Lu, Quanying & Li, Yuze & Chai, Jian & Wang, Shouyang, 2020. "Crude oil price analysis and forecasting: A perspective of “new triangle”," Energy Economics, Elsevier, vol. 87(C).
    6. Zhang, Tingting & Tang, Zhenpeng & Wu, Junchuan & Du, Xiaoxu & Chen, Kaijie, 2021. "Multi-step-ahead crude oil price forecasting based on two-layer decomposition technique and extreme learning machine optimized by the particle swarm optimization algorithm," Energy, Elsevier, vol. 229(C).
    7. Lang, Korbinian & Auer, Benjamin R., 2020. "The economic and financial properties of crude oil: A review," The North American Journal of Economics and Finance, Elsevier, vol. 52(C).
    8. Abdollahi, Hooman & Ebrahimi, Seyed Babak, 2020. "A new hybrid model for forecasting Brent crude oil price," Energy, Elsevier, vol. 200(C).
    9. Yingrui Zhou & Taiyong Li & Jiayi Shi & Zijie Qian, 2019. "A CEEMDAN and XGBOOST-Based Approach to Forecast Crude Oil Prices," Complexity, Hindawi, vol. 2019, pages 1-15, February.
    10. Taiyong Li & Yingrui Zhou & Xinsheng Li & Jiang Wu & Ting He, 2019. "Forecasting Daily Crude Oil Prices Using Improved CEEMDAN and Ridge Regression-Based Predictors," Energies, MDPI, vol. 12(19), pages 1-25, September.
    11. Zhao, Yang & Li, Jianping & Yu, Lean, 2017. "A deep learning ensemble approach for crude oil price forecasting," Energy Economics, Elsevier, vol. 66(C), pages 9-16.
    12. Zhenhua Liu & Zhihua Ding & Tao Lv & Jy S. Wu & Wei Qiang, 2019. "Financial factors affecting oil price change and oil-stock interactions: a review and future perspectives," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 95(1), pages 207-225, January.
    13. Manickavasagam, Jeevananthan & Visalakshmi, S. & Apergis, Nicholas, 2020. "A novel hybrid approach to forecast crude oil futures using intraday data," Technological Forecasting and Social Change, Elsevier, vol. 158(C).
    14. Smyth, Russell & Narayan, Paresh Kumar, 2018. "What do we know about oil prices and stock returns?," International Review of Financial Analysis, Elsevier, vol. 57(C), pages 148-156.
    15. Ding, Yishan, 2018. "A novel decompose-ensemble methodology with AIC-ANN approach for crude oil forecasting," Energy, Elsevier, vol. 154(C), pages 328-336.
    16. Ghaemi Asl, Mahdi & Adekoya, Oluwasegun Babatunde & Rashidi, Muhammad Mahdi & Ghasemi Doudkanlou, Mohammad & Dolatabadi, Ali, 2022. "Forecast of Bayesian-based dynamic connectedness between oil market and Islamic stock indices of Islamic oil-exporting countries: Application of the cascade-forward backpropagation network," Resources Policy, Elsevier, vol. 77(C).
    17. Cheng, Fangzheng & Li, Tian & Wei, Yi-ming & Fan, Tijun, 2019. "The VEC-NAR model for short-term forecasting of oil prices," Energy Economics, Elsevier, vol. 78(C), pages 656-667.
    18. E, Jianwei & Bao, Yanling & Ye, Jimin, 2017. "Crude oil price analysis and forecasting based on variational mode decomposition and independent component analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 484(C), pages 412-427.
    19. Pablo Cansado-Bravo & Carlos Rodríguez-Monroy, 2018. "Persistence of Oil Prices in Gas Import Prices and the Resilience of the Oil-Indexation Mechanism. The Case of Spanish Gas Import Prices," Energies, MDPI, vol. 11(12), pages 1-17, December.
    20. Karasu, Seçkin & Altan, Aytaç, 2022. "Crude oil time series prediction model based on LSTM network with chaotic Henry gas solubility optimization," Energy, Elsevier, vol. 242(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:220:y:2018:i:c:p:154-163. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.