IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v147y2015icp593-610.html
   My bibliography  Save this article

Outlook for ethanol production costs in Brazil up to 2030, for different biomass crops and industrial technologies

Author

Listed:
  • Jonker, J.G.G.
  • van der Hilst, F.
  • Junginger, H.M.
  • Cavalett, O.
  • Chagas, M.F.
  • Faaij, A.P.C.

Abstract

This paper presents an economic outlook of the ethanol industry in Brazil considering different biomass feedstocks and different industrial processing options. A spreadsheet model was designed to account for different feedstocks and industrial processes, and expected trends in biomass yield, sugar- and fibre content, industrial scale and efficiency. Sugarcane and energycane cultivation costs may be reduced from 35US$2010/TC in 2010 to 27US$2010/TC and 22US$2010/TC in 2030 respectively. Eucalyptus and elephant grass cultivation costs could be reduced from 32 to 23US$2010/tonne wet and 38 to 26US$2010/tonne wet for eucalyptus and elephant grass. Total ethanol production costs of first generation processing may decrease from 700US$2010/m3 in 2010, to 432US$2010/m3 in 2030. First generation ethanol production costs may decrease by reduced feedstock costs, increase in sugar content, utilization of cane trash, and use of sweet sorghum. Furthermore, the improvement in industrial efficiency of the first generation process, increasing industrial scale and change to an improved technology are other measures. For second generation technology utilizing eucalyptus, the total ethanol production costs could be strongly reduced to 424US$2010/m3 in 2030. Costs reduction measures for second generation industrial processing include reduced feedstock costs, increasing industrial efficiency and scale, and a change to more advanced industrial process. Overall, biomass yield, increase in sugar content of sugarcane, and improved industrial efficiency are important parameters in total ethanol production costs. Ongoing RD&D effort and commercialization of second generation industrial processing may result in the lowest ethanol production costs for second generation processing in the future.

Suggested Citation

  • Jonker, J.G.G. & van der Hilst, F. & Junginger, H.M. & Cavalett, O. & Chagas, M.F. & Faaij, A.P.C., 2015. "Outlook for ethanol production costs in Brazil up to 2030, for different biomass crops and industrial technologies," Applied Energy, Elsevier, vol. 147(C), pages 593-610.
  • Handle: RePEc:eee:appene:v:147:y:2015:i:c:p:593-610
    DOI: 10.1016/j.apenergy.2015.01.090
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261915001269
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2015.01.090?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lamers, Patrick & Hamelinck, Carlo & Junginger, Martin & Faaij, André, 2011. "International bioenergy trade--A review of past developments in the liquid biofuel market," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(6), pages 2655-2676, August.
    2. Dias, Marina O.S. & Modesto, Marcelo & Ensinas, Adriano V. & Nebra, Silvia A. & Filho, Rubens Maciel & Rossell, Carlos E.V., 2011. "Improving bioethanol production from sugarcane: evaluation of distillation, thermal integration and cogeneration systems," Energy, Elsevier, vol. 36(6), pages 3691-3703.
    3. Crago, Christine L. & Khanna, Madhu & Barton, Jason & Giuliani, Eduardo & Amaral, Weber, 2010. "Competitiveness of Brazilian sugarcane ethanol compared to US corn ethanol," Energy Policy, Elsevier, vol. 38(11), pages 7404-7415, November.
    4. Chovau, Simon & Degrauwe, David & Van der Bruggen, Bart, 2013. "Critical analysis of techno-economic estimates for the production cost of lignocellulosic bio-ethanol," Renewable and Sustainable Energy Reviews, Elsevier, vol. 26(C), pages 307-321.
    5. Dias, Marina O.S. & Junqueira, Tassia L. & Cavalett, Otávio & Pavanello, Lucas G. & Cunha, Marcelo P. & Jesus, Charles D.F. & Maciel Filho, Rubens & Bonomi, Antonio, 2013. "Biorefineries for the production of first and second generation ethanol and electricity from sugarcane," Applied Energy, Elsevier, vol. 109(C), pages 72-78.
    6. Cerqueira Leite, Rogério Cezar de & Verde Leal, Manoel Regis Lima & Barbosa Cortez, Luís Augusto & Griffin, W. Michael & Gaya Scandiffio, Mirna Ivonne, 2009. "Can Brazil replace 5% of the 2025 gasoline world demand with ethanol?," Energy, Elsevier, vol. 34(5), pages 655-661.
    7. Gasques, Jose Garcia & Bastos, Eliana Teles & Valdes, Constanza, 2008. "Preços Da Terra No Brasil," 46th Congress, July 20-23, 2008, Rio Branco, Acre, Brazil 106106, Sociedade Brasileira de Economia, Administracao e Sociologia Rural (SOBER).
    8. de Wit, Marc & Junginger, Martin & Faaij, André, 2013. "Learning in dedicated wood production systems: Past trends, future outlook and implications for bioenergy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 19(C), pages 417-432.
    9. Pellegrini, Luiz Felipe & de Oliveira Junior, Silvio, 2011. "Combined production of sugar, ethanol and electricity: Thermoeconomic and environmental analysis and optimization," Energy, Elsevier, vol. 36(6), pages 3704-3715.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yuan, Xinchuan & Shen, Guannan & Chen, Sitong & Chen, Xiangxue & Zhang, Chengcheng & Liu, Shuangmei & Jin, Mingjie, 2022. "Modified simultaneous saccharification and co-fermentation of DLC pretreated corn stover for high-titer cellulosic ethanol production without water washing or detoxifying pretreated biomass," Energy, Elsevier, vol. 247(C).
    2. Paim, Maria-Augusta & Dalmarco, Arthur R. & Yang, Chung-Han & Salas, Pablo & Lindner, Sören & Mercure, Jean-Francois & de Andrade Guerra, José Baltazar Salgueirinho Osório & Derani, Cristiane & Bruce , 2019. "Evaluating regulatory strategies for mitigating hydrological risk in Brazil through diversification of its electricity mix," Energy Policy, Elsevier, vol. 128(C), pages 393-401.
    3. Pavão, Leandro V. & Santos, Lucas F. & Oliveira, Cássia M. & Cruz, Antonio J.G. & Ravagnani, Mauro A.S.S. & Costa, Caliane B.B., 2023. "Flexible heat integration system in first-/second-generation ethanol production via screening pinch-based method and multiperiod model," Energy, Elsevier, vol. 271(C).
    4. Taghizadeh-Alisaraei, Ahmad & Motevali, Ali & Ghobadian, Barat, 2019. "Ethanol production from date wastes: Adapted technologies, challenges, and global potential," Renewable Energy, Elsevier, vol. 143(C), pages 1094-1110.
    5. Yazan, Devrim Murat & Fraccascia, Luca & Mes, Martijn & Zijm, Henk, 2018. "Cooperation in manure-based biogas production networks: An agent-based modeling approach," Applied Energy, Elsevier, vol. 212(C), pages 820-833.
    6. Machado, P.G. & Cunha, M. & Walter, A. & Faaij, A. & Guilhoto, J.J.M., 2021. "Biobased economy for Brazil: Impacts and strategies for maximizing socioeconomic benefits," Renewable and Sustainable Energy Reviews, Elsevier, vol. 139(C).
    7. Garcia, Teresa Cristina & Durand-Morat, Alvaro & Yang, Wei & Popp, Michael & Schreckhise, William, 2022. "Consumers’ willingness to pay for second-generation ethanol in Brazil," Energy Policy, Elsevier, vol. 161(C).
    8. Budzianowski, Wojciech M. & Postawa, Karol, 2016. "Total Chain Integration of sustainable biorefinery systems," Applied Energy, Elsevier, vol. 184(C), pages 1432-1446.
    9. Bonassa, Gabriela & Schneider, Lara Talita & Canever, Victor Bruno & Cremonez, Paulo André & Frigo, Elisandro Pires & Dieter, Jonathan & Teleken, Joel Gustavo, 2018. "Scenarios and prospects of solid biofuel use in Brazil," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2365-2378.
    10. Brinkman, Marnix L.J. & Wicke, Birka & Faaij, André P.C. & van der Hilst, Floor, 2019. "Projecting socio-economic impacts of bioenergy: Current status and limitations of ex-ante quantification methods," Renewable and Sustainable Energy Reviews, Elsevier, vol. 115(C).
    11. Oliveira, Cássia M. & Pavão, Leandro V. & Ravagnani, Mauro A.S.S. & Cruz, Antonio J.G. & Costa, Caliane B.B., 2018. "Process integration of a multiperiod sugarcane biorefinery," Applied Energy, Elsevier, vol. 213(C), pages 520-539.
    12. Rolz, Carlos & de León, Robert & Mendizábal de Montenegro, Ana Luisa & Porras, Vilma & Cifuentes, Rolando, 2017. "A multiple harvest cultivation strategy for ethanol production from sweet sorghum throughout the year in tropical ecosystems," Renewable Energy, Elsevier, vol. 106(C), pages 103-110.
    13. Zhao, Zhitong & Chong, Katie & Jiang, Jingyang & Wilson, Karen & Zhang, Xiaochen & Wang, Feng, 2018. "Low-carbon roadmap of chemical production: A case study of ethylene in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 97(C), pages 580-591.
    14. Chen, Hongzhang & Fu, Xiaoguo, 2016. "Industrial technologies for bioethanol production from lignocellulosic biomass," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 468-478.
    15. Gomes, Daniel G. & Teixeira, José A. & Domingues, Lucília, 2021. "Economic determinants on the implementation of a Eucalyptus wood biorefinery producing biofuels, energy and high added-value compounds," Applied Energy, Elsevier, vol. 303(C).
    16. Fonseca, G.C. & Costa, C.B.B. & Cruz, A.J.G., 2020. "Economic analysis of a second-generation ethanol and electricity biorefinery using superstructural optimization," Energy, Elsevier, vol. 204(C).
    17. Jéssica Marcon Bressanin & Bruno Colling Klein & Mateus Ferreira Chagas & Marcos Djun Barbosa Watanabe & Isabelle Lobo de Mesquita Sampaio & Antonio Bonomi & Edvaldo Rodrigo de Morais & Otávio Cavalet, 2020. "Techno-Economic and Environmental Assessment of Biomass Gasification and Fischer–Tropsch Synthesis Integrated to Sugarcane Biorefineries," Energies, MDPI, vol. 13(17), pages 1-22, September.
    18. Melikoglu, Mehmet, 2017. "Vision 2023: Status quo and future of biomass and coal for sustainable energy generation in Turkey," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 800-808.
    19. Carminati, Hudson Bolsoni & Milão, Raquel de Freitas D. & de Medeiros, José Luiz & Araújo, Ofélia de Queiroz F., 2019. "Bioenergy and full carbon dioxide sinking in sugarcane-biorefinery with post-combustion capture and storage: Techno-economic feasibility," Applied Energy, Elsevier, vol. 254(C).
    20. Vasconcelos, Marcelo Holanda & Mendes, Fernanda Machado & Ramos, Lucas & Dias, Marina Oliveira S. & Bonomi, Antonio & Jesus, Charles Dayan F. & Watanabe, Marcos Djun B. & Junqueira, Tassia Lopes & Mil, 2020. "Techno-economic assessment of bioenergy and biofuel production in integrated sugarcane biorefinery: Identification of technological bottlenecks and economic feasibility of dilute acid pretreatment," Energy, Elsevier, vol. 199(C).
    21. Xun Zhang & Jingying Fu & Gang Lin & Dong Jiang & Xiaoxi Yan, 2017. "Switchgrass-Based Bioethanol Productivity and Potential Environmental Impact from Marginal Lands in China," Energies, MDPI, vol. 10(2), pages 1-15, February.
    22. Brinkman, Marnix L.J. & da Cunha, Marcelo P. & Heijnen, Sanne & Wicke, Birka & Guilhoto, Joaquim J.M. & Walter, Arnaldo & Faaij, André P.C. & van der Hilst, Floor, 2018. "Interregional assessment of socio-economic effects of sugarcane ethanol production in Brazil," Renewable and Sustainable Energy Reviews, Elsevier, vol. 88(C), pages 347-362.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Khatiwada, Dilip & Leduc, Sylvain & Silveira, Semida & McCallum, Ian, 2016. "Optimizing ethanol and bioelectricity production in sugarcane biorefineries in Brazil," Renewable Energy, Elsevier, vol. 85(C), pages 371-386.
    2. Dias, Marina O.S. & Junqueira, Tassia L. & Jesus, Charles D.F. & Rossell, Carlos E.V. & Maciel Filho, Rubens & Bonomi, Antonio, 2012. "Improving second generation ethanol production through optimization of first generation production process from sugarcane," Energy, Elsevier, vol. 43(1), pages 246-252.
    3. Bechara, Rami & Gomez, Adrien & Saint-Antonin, Valérie & Schweitzer, Jean-Marc & Maréchal, François, 2016. "Methodology for the design and comparison of optimal production configurations of first and first and second generation ethanol with power," Applied Energy, Elsevier, vol. 184(C), pages 247-265.
    4. Bechara, Rami & Gomez, Adrien & Saint-Antonin, Valérie & Schweitzer, Jean-Marc & Maréchal, François & Ensinas, Adriano, 2018. "Review of design works for the conversion of sugarcane to first and second-generation ethanol and electricity," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 152-164.
    5. Edeseyi, Margaret E. & Kaita, Aminu Y. & Harun, Razif & Danquah, Michael K. & Acquah, Caleb & Sia, Joseph Kee Ming, 2015. "Rethinking sustainable biofuel marketing to titivate commercial interests," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 781-792.
    6. Bessa, Larissa C.B.A. & Ferreira, M.C. & Batista, Eduardo A.C. & Meirelles, Antonio J.A., 2013. "Performance and cost evaluation of a new double-effect integration of multicomponent bioethanol distillation," Energy, Elsevier, vol. 63(C), pages 1-9.
    7. Palacios-Bereche, M.C. & Palacios-Bereche, R. & Ensinas, A.V. & Gallego, A. Garrido & Modesto, Marcelo & Nebra, S.A., 2022. "Brazilian sugar cane industry – A survey on future improvements in the process energy management," Energy, Elsevier, vol. 259(C).
    8. Díaz Pérez, Álvaro A. & Escobar Palacio, José C. & Venturini, Osvaldo J. & Martínez Reyes, Arnaldo M. & Rúa Orozco, Dimas J. & Silva Lora, Electo E. & Almazán del Olmo, Oscar A., 2018. "Thermodynamic and economic evaluation of reheat and regeneration alternatives in cogeneration systems of the Brazilian sugarcane and alcohol sector," Energy, Elsevier, vol. 152(C), pages 247-262.
    9. Herreras Martínez, Sara & van Eijck, Janske & Pereira da Cunha, Marcelo & Guilhoto, Joaquim J.M. & Walter, Arnaldo & Faaij, Andre, 2013. "Analysis of socio-economic impacts of sustainable sugarcane–ethanol production by means of inter-regional Input–Output analysis: Demonstrated for Northeast Brazil," Renewable and Sustainable Energy Reviews, Elsevier, vol. 28(C), pages 290-316.
    10. João Paulo Guerra & Fernando Henrique Cardoso & Alex Nogueira & Luiz Kulay, 2018. "Thermodynamic and Environmental Analysis of Scaling up Cogeneration Units Driven by Sugarcane Biomass to Enhance Power Exports," Energies, MDPI, vol. 11(1), pages 1-23, January.
    11. Avelino Gonçalves, Fabiano & dos Santos, Everaldo Silvino & de Macedo, Gorete Ribeiro, 2015. "Use of cultivars of low cost, agroindustrial and urban waste in the production of cellulosic ethanol in Brazil: A proposal to utilization of microdistillery," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 1287-1303.
    12. Pina, Eduardo A. & Palacios-Bereche, Reynaldo & Chavez-Rodriguez, Mauro F. & Ensinas, Adriano V. & Modesto, Marcelo & Nebra, Silvia A., 2017. "Reduction of process steam demand and water-usage through heat integration in sugar and ethanol production from sugarcane – Evaluation of different plant configurations," Energy, Elsevier, vol. 138(C), pages 1263-1280.
    13. Bessa, Larissa C.B.A. & Batista, Fabio R.M. & Meirelles, Antonio J.A., 2012. "Double-effect integration of multicomponent alcoholic distillation columns," Energy, Elsevier, vol. 45(1), pages 603-612.
    14. Lopes, Verônica dos Santos & Fischer, Janaína & Pinheiro, Tais Magalhães Abrantes & Cabral, Bruna Vieira & Cardoso, Vicelma Luiz & Coutinho Filho, Ubirajara, 2017. "Biosurfactant and ethanol co-production using Pseudomonas aeruginosa and Saccharomyces cerevisiae co-cultures and exploded sugarcane bagasse," Renewable Energy, Elsevier, vol. 109(C), pages 305-310.
    15. Danilo Arcentales-Bastidas & Carla Silva & Angel D. Ramirez, 2022. "The Environmental Profile of Ethanol Derived from Sugarcane in Ecuador: A Life Cycle Assessment Including the Effect of Cogeneration of Electricity in a Sugar Industrial Complex," Energies, MDPI, vol. 15(15), pages 1-24, July.
    16. Deborah Bentivoglio & Adele Finco & Mirian Rumenos Piedade Bacchi, 2016. "Interdependencies between Biofuel, Fuel and Food Prices: The Case of the Brazilian Ethanol Market," Energies, MDPI, vol. 9(6), pages 1-16, June.
    17. Unknown, 2013. "Journal of International Agricultural Trade and Development, Volume 09, Number 1, 2013," Journal of International Agricultural Trade and Development, Journal of International Agricultural Trade and Development, vol. 9(1), pages 140-140.
    18. Silva, J.A.M. & Flórez-Orrego, D. & Oliveira, S., 2014. "An exergy based approach to determine production cost and CO2 allocation for petroleum derived fuels," Energy, Elsevier, vol. 67(C), pages 490-495.
    19. Suopajärvi, Hannu & Pongrácz, Eva & Fabritius, Timo, 2013. "The potential of using biomass-based reducing agents in the blast furnace: A review of thermochemical conversion technologies and assessments related to sustainability," Renewable and Sustainable Energy Reviews, Elsevier, vol. 25(C), pages 511-528.
    20. Felipe Godoy Righetto & Carlos Eduardo Keutenedjian Mady, 2023. "Exergy Analysis of a Sugarcane Crop: A Planting-to-Harvest Approach," Sustainability, MDPI, vol. 15(20), pages 1-14, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:147:y:2015:i:c:p:593-610. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.