IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v85y2016icp371-386.html
   My bibliography  Save this article

Optimizing ethanol and bioelectricity production in sugarcane biorefineries in Brazil

Author

Listed:
  • Khatiwada, Dilip
  • Leduc, Sylvain
  • Silveira, Semida
  • McCallum, Ian

Abstract

In sugarcane biorefineries, the lignocellulosic portion of the sugarcane biomass (i.e. bagasse and cane trash) can be used as fuel for electricity production and/or feedstock for second generation (2G) ethanol. This study presents a techno-economic analysis of upgraded sugarcane biorefineries in Brazil, aiming at utilizing surplus bagasse and cane trash for electricity and/or ethanol production. The study investigates the trade-off on sugarcane biomass use for energy production: bioelectricity versus 2G ethanol production. The BeWhere mixed integer and spatially explicit model is used for evaluating the choice of technological options. Different scenarios are developed to find the optimal utilization of sugarcane biomass. The study finds that energy prices, type of electricity substituted, biofuel support and carbon tax, investment costs, and conversion efficiencies are the major factors influencing the technological choice. At the existing market and technological conditions applied in the upgraded biorefineries, 300 PJ y−1 2G ethanol could be optimally produced and exported to the EU, which corresponds to 2.5% of total transport fuel demand in the EU. This study provides a methodological framework on how to optimize the alternative use of agricultural residues and industrial co-products for energy production in agro-industries considering biomass supply chains, the pattern of domestic energy demand, and biofuel trade.

Suggested Citation

  • Khatiwada, Dilip & Leduc, Sylvain & Silveira, Semida & McCallum, Ian, 2016. "Optimizing ethanol and bioelectricity production in sugarcane biorefineries in Brazil," Renewable Energy, Elsevier, vol. 85(C), pages 371-386.
  • Handle: RePEc:eee:renene:v:85:y:2016:i:c:p:371-386
    DOI: 10.1016/j.renene.2015.06.009
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S096014811530032X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2015.06.009?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mafakheri, Fereshteh & Nasiri, Fuzhan, 2014. "Modeling of biomass-to-energy supply chain operations: Applications, challenges and research directions," Energy Policy, Elsevier, vol. 67(C), pages 116-126.
    2. Antonio Bizzo, Waldir & Lenço, Paulo César & Carvalho, Danilo José & Veiga, João Paulo Soto, 2014. "The generation of residual biomass during the production of bio-ethanol from sugarcane, its characterization and its use in energy production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 29(C), pages 589-603.
    3. Gupta, Anubhuti & Verma, Jay Prakash, 2015. "Sustainable bio-ethanol production from agro-residues: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 550-567.
    4. Tittmann, P.W. & Parker, N.C. & Hart, Q.J. & Jenkins, B.M., 2010. "A spatially explicit techno-economic model of bioenergy and biofuels production in California," Journal of Transport Geography, Elsevier, vol. 18(6), pages 715-728.
    5. Timilsina, Govinda R. & Csordas, Stefan & Mevel, Simon, 2011. "Under what conditions does a carbon tax on fossil fuels stimulate biofuels ?," Policy Research Working Paper Series 5678, The World Bank.
    6. Pellegrini, Luiz Felipe & de Oliveira Junior, Silvio, 2011. "Combined production of sugar, ethanol and electricity: Thermoeconomic and environmental analysis and optimization," Energy, Elsevier, vol. 36(6), pages 3704-3715.
    7. Walter, Arnaldo & Ensinas, Adriano V., 2010. "Combined production of second-generation biofuels and electricity from sugarcane residues," Energy, Elsevier, vol. 35(2), pages 874-879.
    8. Smithers, Jeff, 2014. "Review of sugarcane trash recovery systems for energy cogeneration in South Africa," Renewable and Sustainable Energy Reviews, Elsevier, vol. 32(C), pages 915-925.
    9. Leduc, S. & Starfelt, F. & Dotzauer, E. & Kindermann, G. & McCallum, I. & Obersteiner, M. & Lundgren, J., 2010. "Optimal location of lignocellulosic ethanol refineries with polygeneration in Sweden," Energy, Elsevier, vol. 35(6), pages 2709-2716.
    10. Ghatak, Himadri Roy, 2011. "Biorefineries from the perspective of sustainability: Feedstocks, products, and processes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(8), pages 4042-4052.
    11. Crago, Christine L. & Khanna, Madhu & Barton, Jason & Giuliani, Eduardo & Amaral, Weber, 2010. "Competitiveness of Brazilian sugarcane ethanol compared to US corn ethanol," Energy Policy, Elsevier, vol. 38(11), pages 7404-7415, November.
    12. Timilsina, Govinda R. & Csordás, Stefan & Mevel, Simon, 2011. "When does a carbon tax on fossil fuels stimulate biofuels?," Ecological Economics, Elsevier, vol. 70(12), pages 2400-2415.
    13. Hiloidhari, Moonmoon & Das, Dhiman & Baruah, D.C., 2014. "Bioenergy potential from crop residue biomass in India," Renewable and Sustainable Energy Reviews, Elsevier, vol. 32(C), pages 504-512.
    14. Khatiwada, Dilip & Seabra, Joaquim & Silveira, Semida & Walter, Arnaldo, 2012. "Power generation from sugarcane biomass – A complementary option to hydroelectricity in Nepal and Brazil," Energy, Elsevier, vol. 48(1), pages 241-254.
    15. Dias, Marina O.S. & Junqueira, Tassia L. & Cavalett, Otávio & Pavanello, Lucas G. & Cunha, Marcelo P. & Jesus, Charles D.F. & Maciel Filho, Rubens & Bonomi, Antonio, 2013. "Biorefineries for the production of first and second generation ethanol and electricity from sugarcane," Applied Energy, Elsevier, vol. 109(C), pages 72-78.
    16. Dantas, Guilherme A. & Legey, Luiz F.L. & Mazzone, Antonella, 2013. "Energy from sugarcane bagasse in Brazil: An assessment of the productivity and cost of different technological routes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 21(C), pages 356-364.
    17. Arnaldo Walter & Marcelo Valadares Galdos & Fabio Vale Scarpare & Manoel Regis Lima Verde Leal & Joaquim Eugênio Abel Seabra & Marcelo Pereira da Cunha & Michelle Cristina Araujo Picoli & Camila Ortol, 2014. "Brazilian sugarcane ethanol: developments so far and challenges for the future," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 3(1), pages 70-92, January.
    18. Lamers, Patrick & Hamelinck, Carlo & Junginger, Martin & Faaij, André, 2011. "International bioenergy trade--A review of past developments in the liquid biofuel market," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(6), pages 2655-2676, August.
    19. Dias, Marina O.S. & Junqueira, Tassia L. & Jesus, Charles D.F. & Rossell, Carlos E.V. & Maciel Filho, Rubens & Bonomi, Antonio, 2012. "Improving second generation ethanol production through optimization of first generation production process from sugarcane," Energy, Elsevier, vol. 43(1), pages 246-252.
    20. Schmidt, Johannes & Leduc, Sylvain & Dotzauer, Erik & Schmid, Erwin, 2011. "Cost-effective policy instruments for greenhouse gas emission reduction and fossil fuel substitution through bioenergy production in Austria," Energy Policy, Elsevier, vol. 39(6), pages 3261-3280, June.
    21. Seabra, Joaquim E.A. & Macedo, Isaias C., 2011. "Comparative analysis for power generation and ethanol production from sugarcane residual biomass in Brazil," Energy Policy, Elsevier, vol. 39(1), pages 421-428, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Avelino Gonçalves, Fabiano & dos Santos, Everaldo Silvino & de Macedo, Gorete Ribeiro, 2015. "Use of cultivars of low cost, agroindustrial and urban waste in the production of cellulosic ethanol in Brazil: A proposal to utilization of microdistillery," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 1287-1303.
    2. Santos, V.E.N. & Ely, R.N. & Szklo, A.S. & Magrini, A., 2016. "Chemicals, electricity and fuels from biorefineries processing Brazil׳s sugarcane bagasse: Production recipes and minimum selling prices," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 1443-1458.
    3. Bechara, Rami & Gomez, Adrien & Saint-Antonin, Valérie & Schweitzer, Jean-Marc & Maréchal, François & Ensinas, Adriano, 2018. "Review of design works for the conversion of sugarcane to first and second-generation ethanol and electricity," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 152-164.
    4. Lyrio de Oliveira, Lucas & García Kerdan, Iván & de Oliveira Ribeiro, Celma & Oller do Nascimento, Claudio Augusto & Rego, Erik Eduardo & Giarola, Sara & Hawkes, Adam, 2020. "Modelling the technical potential of bioelectricity production under land use constraints: A multi-region Brazil case study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 123(C).
    5. Jonker, J.G.G. & van der Hilst, F. & Junginger, H.M. & Cavalett, O. & Chagas, M.F. & Faaij, A.P.C., 2015. "Outlook for ethanol production costs in Brazil up to 2030, for different biomass crops and industrial technologies," Applied Energy, Elsevier, vol. 147(C), pages 593-610.
    6. Bechara, Rami & Gomez, Adrien & Saint-Antonin, Valérie & Schweitzer, Jean-Marc & Maréchal, François, 2016. "Methodology for the design and comparison of optimal production configurations of first and first and second generation ethanol with power," Applied Energy, Elsevier, vol. 184(C), pages 247-265.
    7. Durusut, Emrah & Tahir, Foaad & Foster, Sam & Dineen, Denis & Clancy, Matthew, 2018. "BioHEAT: A policy decision support tool in Ireland’s bioenergy and heat sectors," Applied Energy, Elsevier, vol. 213(C), pages 306-321.
    8. Palacios-Bereche, M.C. & Palacios-Bereche, R. & Ensinas, A.V. & Gallego, A. Garrido & Modesto, Marcelo & Nebra, S.A., 2022. "Brazilian sugar cane industry – A survey on future improvements in the process energy management," Energy, Elsevier, vol. 259(C).
    9. Cambero, Claudia & Sowlati, Taraneh, 2014. "Assessment and optimization of forest biomass supply chains from economic, social and environmental perspectives – A review of literature," Renewable and Sustainable Energy Reviews, Elsevier, vol. 36(C), pages 62-73.
    10. Cervi, Walter Rossi & Lamparelli, Rubens Augusto Camargo & Seabra, Joaquim Eugênio Abel & Junginger, Martin & van der Hilst, Floor, 2020. "Spatial assessment of the techno-economic potential of bioelectricity production from sugarcane straw," Renewable Energy, Elsevier, vol. 156(C), pages 1313-1324.
    11. Copa Rey, José Ramón & Tamayo Pacheco, Jorge Jadid & António da Cruz Tarelho, Luís & Silva, Valter & Cardoso, João Sousa & Silveira, José Luz & Tuna, Celso Eduardo, 2021. "Evaluation of cogeneration alternative systems integrating biomass gasification applied to a Brazilian sugar industry," Renewable Energy, Elsevier, vol. 178(C), pages 318-333.
    12. Khatiwada, Dilip & Silveira, Semida, 2017. "Scenarios for bioethanol production in Indonesia: How can we meet mandatory blending targets?," Energy, Elsevier, vol. 119(C), pages 351-361.
    13. Lopes, Verônica dos Santos & Fischer, Janaína & Pinheiro, Tais Magalhães Abrantes & Cabral, Bruna Vieira & Cardoso, Vicelma Luiz & Coutinho Filho, Ubirajara, 2017. "Biosurfactant and ethanol co-production using Pseudomonas aeruginosa and Saccharomyces cerevisiae co-cultures and exploded sugarcane bagasse," Renewable Energy, Elsevier, vol. 109(C), pages 305-310.
    14. Doumax, Virginie & Philip, Jean-Marc & Sarasa, Cristina, 2014. "Biofuels, tax policies and oil prices in France: Insights from a dynamic CGE model," Energy Policy, Elsevier, vol. 66(C), pages 603-614.
    15. Espinoza Pérez, Andrea Teresa & Camargo, Mauricio & Narváez Rincón, Paulo César & Alfaro Marchant, Miguel, 2017. "Key challenges and requirements for sustainable and industrialized biorefinery supply chain design and management: A bibliographic analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 350-359.
    16. Gilani, H. & Sahebi, H. & Oliveira, Fabricio, 2020. "Sustainable sugarcane-to-bioethanol supply chain network design: A robust possibilistic programming model," Applied Energy, Elsevier, vol. 278(C).
    17. Holmatov, B. & Schyns, J.F. & Krol, M.S. & Gerbens-Leenes, P.W. & Hoekstra, A.Y., 2021. "Can crop residues provide fuel for future transport? Limited global residue bioethanol potentials and large associated land, water and carbon footprints," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    18. Ko, Chun-Han & Wang, Ya-Nang & Chang, Fang-Chih & Chen, Jia-Jie & Chen, Wen-Hua & Hwang, Wen-Song, 2012. "Potentials of lignocellulosic bioethanols produced from hardwood in Taiwan," Energy, Elsevier, vol. 44(1), pages 329-334.
    19. Lan, Kai & Ou, Longwen & Park, Sunkyu & Kelley, Stephen S. & English, Burton C. & Yu, T. Edward & Larson, James & Yao, Yuan, 2021. "Techno-Economic Analysis of decentralized preprocessing systems for fast pyrolysis biorefineries with blended feedstocks in the southeastern United States," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
    20. Gongora, Aldair & Villafranco, Dorien, 2018. "Sugarcane bagasse cogeneration in Belize: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 96(C), pages 58-63.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:85:y:2016:i:c:p:371-386. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.