IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v136y2014icp1076-1084.html
   My bibliography  Save this article

BizWatts: A modular socio-technical energy management system for empowering commercial building occupants to conserve energy

Author

Listed:
  • Gulbinas, R.
  • Jain, R.K.
  • Taylor, J.E.

Abstract

Commercial buildings represent a significant portion of energy consumption and environmental emissions worldwide. To help mitigate the environmental impact of building operations, building energy management systems and behavior-based campaigns designed to reduce energy consumption are becoming increasingly popular. In this paper, we describe the development of a modular socio-technical energy management system, BizWatts, which combines the two approaches by providing real-time, appliance-level power management and socially contextualized energy consumption feedback. We describe in detail the physical and virtual architecture of the system, which simultaneously engages building occupants and facility managers, as well as the main principles behind the interface design and component functionalities. A discussion about how the data collection capabilities of the system enable insightful commercial building energy efficiency studies and quantitative network analysis is also included. We conclude by commenting on the validation of the system, identifying current system limitations and introducing new research avenues that the development and deployment of BizWatts enables.

Suggested Citation

  • Gulbinas, R. & Jain, R.K. & Taylor, J.E., 2014. "BizWatts: A modular socio-technical energy management system for empowering commercial building occupants to conserve energy," Applied Energy, Elsevier, vol. 136(C), pages 1076-1084.
  • Handle: RePEc:eee:appene:v:136:y:2014:i:c:p:1076-1084
    DOI: 10.1016/j.apenergy.2014.07.034
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261914007168
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2014.07.034?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. repec:cmj:networ:y:2013:i:1:p:42-53 is not listed on IDEAS
    2. Cagno, Enrico & Trianni, Andrea, 2013. "Exploring drivers for energy efficiency within small- and medium-sized enterprises: First evidences from Italian manufacturing enterprises," Applied Energy, Elsevier, vol. 104(C), pages 276-285.
    3. Agarwal, Vikas & Ma, Linlin, 2013. "Managerial multitasking in the mutual fund industry," CFR Working Papers 13-10, University of Cologne, Centre for Financial Research (CFR).
    4. Costa, Andrea & Keane, Marcus M. & Torrens, J. Ignacio & Corry, Edward, 2013. "Building operation and energy performance: Monitoring, analysis and optimisation toolkit," Applied Energy, Elsevier, vol. 101(C), pages 310-316.
    5. Swords, B. & Coyle, E. & Norton, B., 2008. "An enterprise energy-information system," Applied Energy, Elsevier, vol. 85(1), pages 61-69, January.
    6. Ueno, Tsuyoshi & Sano, Fuminori & Saeki, Osamu & Tsuji, Kiichiro, 2006. "Effectiveness of an energy-consumption information system on energy savings in residential houses based on monitored data," Applied Energy, Elsevier, vol. 83(2), pages 166-183, February.
    7. Wei Chen & Hun‐Tong Tan & Elaine Ying Wang, 2013. "Fair Value Accounting and Managers' Hedging Decisions," Journal of Accounting Research, Wiley Blackwell, vol. 51(1), pages 67-103, March.
    8. Marinakis, Vangelis & Doukas, Haris & Karakosta, Charikleia & Psarras, John, 2013. "An integrated system for buildings’ energy-efficient automation: Application in the tertiary sector," Applied Energy, Elsevier, vol. 101(C), pages 6-14.
    9. Chen, Jiayu & Jain, Rishee K. & Taylor, John E., 2013. "Block Configuration Modeling: A novel simulation model to emulate building occupant peer networks and their impact on building energy consumption," Applied Energy, Elsevier, vol. 105(C), pages 358-368.
    10. Allcott, Hunt, 2011. "Social norms and energy conservation," Journal of Public Economics, Elsevier, vol. 95(9-10), pages 1082-1095, October.
    11. Allcott, Hunt, 2011. "Social norms and energy conservation," Journal of Public Economics, Elsevier, vol. 95(9), pages 1082-1095.
    12. repec:cmj:networ:y:2013:i:1:p:54-66 is not listed on IDEAS
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Liu, Xiaoqi & Lee, Seungjae & Bilionis, Ilias & Karava, Panagiota & Joe, Jaewan & Sadeghi, Seyed Amir, 2021. "A user-interactive system for smart thermal environment control in office buildings," Applied Energy, Elsevier, vol. 298(C).
    2. Antonio Paone & Jean-Philippe Bacher, 2018. "The Impact of Building Occupant Behavior on Energy Efficiency and Methods to Influence It: A Review of the State of the Art," Energies, MDPI, vol. 11(4), pages 1-19, April.
    3. Good, Nicholas, 2019. "Using behavioural economic theory in modelling of demand response," Applied Energy, Elsevier, vol. 239(C), pages 107-116.
    4. Margherita Pillan & Fiammetta Costa & Valentina Caiola, 2023. "How Could People and Communities Contribute to the Energy Transition? Conceptual Maps to Inform, Orient, and Inspire Design Actions and Education," Sustainability, MDPI, vol. 15(19), pages 1-31, October.
    5. Khosrowpour, Ardalan & Xie, Yimeng & Taylor, John E. & Hong, Yili, 2016. "One size does not fit all: Establishing the need for targeted eco-feedback," Applied Energy, Elsevier, vol. 184(C), pages 523-530.
    6. Francisco, Abigail & Truong, Hanh & Khosrowpour, Ardalan & Taylor, John E. & Mohammadi, Neda, 2018. "Occupant perceptions of building information model-based energy visualizations in eco-feedback systems," Applied Energy, Elsevier, vol. 221(C), pages 220-228.
    7. Azar, Elie & Nikolopoulou, Christina & Papadopoulos, Sokratis, 2016. "Integrating and optimizing metrics of sustainable building performance using human-focused agent-based modeling," Applied Energy, Elsevier, vol. 183(C), pages 926-937.
    8. Henze, Gregor P. & Pavlak, Gregory S. & Florita, Anthony R. & Dodier, Robert H. & Hirsch, Adam I., 2015. "An energy signal tool for decision support in building energy systems," Applied Energy, Elsevier, vol. 138(C), pages 51-70.
    9. Khosrowpour, Ardalan & Jain, Rishee K. & Taylor, John E. & Peschiera, Gabriel & Chen, Jiayu & Gulbinas, Rimas, 2018. "A review of occupant energy feedback research: Opportunities for methodological fusion at the intersection of experimentation, analytics, surveys and simulation," Applied Energy, Elsevier, vol. 218(C), pages 304-316.
    10. Ma, Zheng & Knotzer, Armin & Billanes, Joy Dalmacio & Jørgensen, Bo Nørregaard, 2020. "A literature review of energy flexibility in district heating with a survey of the stakeholders’ participation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 123(C).
    11. Francisco, Abigail & Taylor, John E., 2019. "Understanding citizen perspectives on open urban energy data through the development and testing of a community energy feedback system," Applied Energy, Elsevier, vol. 256(C).
    12. Most Nahida Akter & Md Apel Mahmud & Amanullah Maung Than Oo, 2017. "A Hierarchical Transactive Energy Management System for Energy Sharing in Residential Microgrids," Energies, MDPI, vol. 10(12), pages 1-27, December.
    13. Casals, Miquel & Gangolells, Marta & Forcada, Núria & Macarulla, Marcel & Giretti, Alberto & Vaccarini, Massimo, 2016. "SEAM4US: An intelligent energy management system for underground stations," Applied Energy, Elsevier, vol. 166(C), pages 150-164.
    14. Nilsson, Andreas & Andersson, Kristin & Bergstad, Cecilia Jakobsson, 2015. "Energy behaviors at the office: An intervention study on the use of equipment," Applied Energy, Elsevier, vol. 146(C), pages 434-441.
    15. Rafsanjani, Hamed Nabizadeh & Ghahramani, Ali & Nabizadeh, Amir Hossein, 2020. "iSEA: IoT-based smartphone energy assistant for prompting energy-aware behaviors in commercial buildings," Applied Energy, Elsevier, vol. 266(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yue, Ting & Long, Ruyin & Chen, Hong, 2013. "Factors influencing energy-saving behavior of urban households in Jiangsu Province," Energy Policy, Elsevier, vol. 62(C), pages 665-675.
    2. Anderson, Kyle & Lee, SangHyun, 2016. "An empirically grounded model for simulating normative energy use feedback interventions," Applied Energy, Elsevier, vol. 173(C), pages 272-282.
    3. Chen, Victor L. & Delmas, Magali A. & Kaiser, William J. & Locke, Stephen L., 2015. "What can we learn from high-frequency appliance-level energy metering? Results from a field experiment," Energy Policy, Elsevier, vol. 77(C), pages 164-175.
    4. Batalla-Bejerano, Joan & Trujillo-Baute, Elisa & Villa-Arrieta, Manuel, 2020. "Smart meters and consumer behaviour: Insights from the empirical literature," Energy Policy, Elsevier, vol. 144(C).
    5. Buckley, Penelope, 2020. "Prices, information and nudges for residential electricity conservation: A meta-analysis," Ecological Economics, Elsevier, vol. 172(C).
    6. Khosrowpour, Ardalan & Jain, Rishee K. & Taylor, John E. & Peschiera, Gabriel & Chen, Jiayu & Gulbinas, Rimas, 2018. "A review of occupant energy feedback research: Opportunities for methodological fusion at the intersection of experimentation, analytics, surveys and simulation," Applied Energy, Elsevier, vol. 218(C), pages 304-316.
    7. Du, Limin & Guo, Jin & Wei, Chu, 2017. "Impact of information feedback on residential electricity demand in China," Resources, Conservation & Recycling, Elsevier, vol. 125(C), pages 324-334.
    8. Camara, N’Famory & Xu, Deyi & Binyet, Emmanuel, 2018. "Enhancing household energy consumption: How should it be done?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 669-681.
    9. Simcock, Neil & MacGregor, Sherilyn & Catney, Philip & Dobson, Andrew & Ormerod, Mark & Robinson, Zoe & Ross, Simon & Royston, Sarah & Marie Hall, Sarah, 2014. "Factors influencing perceptions of domestic energy information: Content, source and process," Energy Policy, Elsevier, vol. 65(C), pages 455-464.
    10. Lee, Dasheng & Cheng, Chin-Chi, 2016. "Energy savings by energy management systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 760-777.
    11. Chen, Jiayu & Jain, Rishee K. & Taylor, John E., 2013. "Block Configuration Modeling: A novel simulation model to emulate building occupant peer networks and their impact on building energy consumption," Applied Energy, Elsevier, vol. 105(C), pages 358-368.
    12. Taylor, Nicholas W. & Jones, Pierce H. & Kipp, M. Jennison, 2014. "Targeting utility customers to improve energy savings from conservation and efficiency programs," Applied Energy, Elsevier, vol. 115(C), pages 25-36.
    13. Akito Ozawa & Ryota Furusato & Yoshikuni Yoshida, 2017. "Tailor-Made Feedback to Reduce Residential Electricity Consumption: The Effect of Information on Household Lifestyle in Japan," Sustainability, MDPI, vol. 9(4), pages 1-23, March.
    14. Lillemo, Shuling Chen, 2014. "Measuring the effect of procrastination and environmental awareness on households' energy-saving behaviours: An empirical approach," Energy Policy, Elsevier, vol. 66(C), pages 249-256.
    15. Peter Bergman, 2020. "Nudging Technology Use: Descriptive and Experimental Evidence from School Information Systems," Education Finance and Policy, MIT Press, vol. 15(4), pages 623-647, Fall.
    16. Todd D. Gerarden & Richard G. Newell & Robert N. Stavins, 2017. "Assessing the Energy-Efficiency Gap," Journal of Economic Literature, American Economic Association, vol. 55(4), pages 1486-1525, December.
    17. Schleich, Joachim & Faure, Corinne & Guetlein, Marie-Charlotte & Tu, Gengyang, 2020. "Conveyance, envy, and homeowner choice of appliances," Energy Economics, Elsevier, vol. 89(C).
    18. Damgaard, Mette Trier & Nielsen, Helena Skyt, 2018. "Nudging in education," Economics of Education Review, Elsevier, vol. 64(C), pages 313-342.
    19. Chatzigeorgiou, I.M. & Andreou, G.T., 2021. "A systematic review on feedback research for residential energy behavior change through mobile and web interfaces," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    20. Beatty, Timothy K.M. & Katare, Bhagyashree, 2018. "Low-cost approaches to increasing gym attendance," Journal of Health Economics, Elsevier, vol. 61(C), pages 63-76.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:136:y:2014:i:c:p:1076-1084. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.