IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v256y2019ics0306261919314916.html
   My bibliography  Save this article

Understanding citizen perspectives on open urban energy data through the development and testing of a community energy feedback system

Author

Listed:
  • Francisco, Abigail
  • Taylor, John E.

Abstract

With the rise of advanced and affordable sensors offering continuous monitoring of city infrastructure, cities are increasingly seeking to become more ‘smart’ and are adopting data-driven approaches to help meet sustainability goals. In the area of building energy efficiency, closely coupled with this effort is the prevalence of building energy benchmarking policies, which require public disclosure of vast new quantities of building-level energy data at urban scales (i.e., open urban energy data). While existing research efforts have focused on the potential of this data to transform energy efficiency markets and investments in the real estate sector, little research has been dedicated to assessing this information’s value to the general public. Given that achieving energy reductions in the built environment will require not only energy efficiency investments, but also greater awareness, engagement, and action from ordinary citizens, we study the potential of open urban energy data in providing citizen benefits. Energy-cyber-physical systems offer a pertinent framework to link data from the virtual world to citizens’ physical reality in order to improve their understanding and decision making. Adopting an energy-cyber-physical system perspective, we aim to connect open urban energy data to citizens through the development and evaluation of a novel community-scale energy feedback system. This mobile cyber-physical system transforms building-level electricity consumption and production data across Georgia Tech’s campus into a mobile application consisting of three features: spatial feedback, energy supply feedback, and energy consumption feedback. Augmented-reality visualization elements are integrated into the system, providing Georgia Tech community members a direct link between their experienced physical environment and data stored in the virtual world. Applying a user-centered design approach, prospective users evaluate the system via thinking aloud sessions and user surveys to assess understandings and perceptions of open urban energy data for the Georgia Tech campus. The results contribute to literature seeking to create energy feedback systems at the community-scale and expand research investigating citizen reactions to and opinions of open urban energy data. This research is an integral step to further engagement and participation from the public to help achieve a sustainable and citizen-valued energy future.

Suggested Citation

  • Francisco, Abigail & Taylor, John E., 2019. "Understanding citizen perspectives on open urban energy data through the development and testing of a community energy feedback system," Applied Energy, Elsevier, vol. 256(C).
  • Handle: RePEc:eee:appene:v:256:y:2019:i:c:s0306261919314916
    DOI: 10.1016/j.apenergy.2019.113804
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261919314916
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2019.113804?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wang, S. & Kim, A.A. & Johnson, E.M., 2017. "Understanding the deterministic and probabilistic business cases for occupant based plug load management strategies in commercial office buildings," Applied Energy, Elsevier, vol. 191(C), pages 398-413.
    2. Burchell, Kevin & Rettie, Ruth & Roberts, Tom C., 2016. "Householder engagement with energy consumption feedback: the role of community action and communications," Energy Policy, Elsevier, vol. 88(C), pages 178-186.
    3. Azar, Elie & Al Ansari, Hamad, 2017. "Framework to investigate energy conservation motivation and actions of building occupants: The case of a green campus in Abu Dhabi, UAE," Applied Energy, Elsevier, vol. 190(C), pages 563-573.
    4. Palmer, Karen & Walls, Margaret, 2015. "Can Benchmarking and Disclosure Laws Provide Incentives for Energy Efficiency Improvements in Buildings?," RFF Working Paper Series dp-15-09, Resources for the Future.
    5. O’Dwyer, Edward & Pan, Indranil & Acha, Salvador & Shah, Nilay, 2019. "Smart energy systems for sustainable smart cities: Current developments, trends and future directions," Applied Energy, Elsevier, vol. 237(C), pages 581-597.
    6. Ornetzeder, Michael & Rohracher, Harald, 2006. "User-led innovations and participation processes: lessons from sustainable energy technologies," Energy Policy, Elsevier, vol. 34(2), pages 138-150, January.
    7. Francisco, Abigail & Truong, Hanh & Khosrowpour, Ardalan & Taylor, John E. & Mohammadi, Neda, 2018. "Occupant perceptions of building information model-based energy visualizations in eco-feedback systems," Applied Energy, Elsevier, vol. 221(C), pages 220-228.
    8. Geelen, Daphne & Reinders, Angèle & Keyson, David, 2013. "Empowering the end-user in smart grids: Recommendations for the design of products and services," Energy Policy, Elsevier, vol. 61(C), pages 151-161.
    9. Johan Schot & Laur Kanger & Geert Verbong, 2016. "The roles of users in shaping transitions to new energy systems," Nature Energy, Nature, vol. 1(5), pages 1-7, May.
    10. Gulbinas, R. & Jain, R.K. & Taylor, J.E., 2014. "BizWatts: A modular socio-technical energy management system for empowering commercial building occupants to conserve energy," Applied Energy, Elsevier, vol. 136(C), pages 1076-1084.
    11. Bomberg, Elizabeth & McEwen, Nicola, 2012. "Mobilizing community energy," Energy Policy, Elsevier, vol. 51(C), pages 435-444.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Troy Malatesta & Gregory M. Morrison & Jessica K. Breadsell & Christine Eon, 2023. "A Systematic Literature Review of the Interplay between Renewable Energy Systems and Occupant Practices," Sustainability, MDPI, vol. 15(12), pages 1-27, June.
    2. Fabio De Felice & Marta Travaglioni & Antonella Petrillo, 2021. "Innovation Trajectories for a Society 5.0," Data, MDPI, vol. 6(11), pages 1-30, November.
    3. Chalal, M.L. & Medjdoub, B. & Bezai, N. & Bull, R. & Zune, M., 2022. "Visualisation in energy eco-feedback systems: A systematic review of good practice," Renewable and Sustainable Energy Reviews, Elsevier, vol. 162(C).
    4. Mrówczyńska, M. & Skiba, M. & Sztubecka, M. & Bazan-Krzywoszańska, A. & Kazak, J.K. & Gajownik, P., 2021. "Scenarios as a tool supporting decisions in urban energy policy: The analysis using fuzzy logic, multi-criteria analysis and GIS tools," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hyysalo, Sampsa & Juntunen, Jouni K. & Martiskainen, Mari, 2018. "Energy Internet forums as acceleration phase transition intermediaries," Research Policy, Elsevier, vol. 47(5), pages 872-885.
    2. Berka, Anna L. & Creamer, Emily, 2018. "Taking stock of the local impacts of community owned renewable energy: A review and research agenda," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3400-3419.
    3. Yash Chawla & Anna Kowalska-Pyzalska & Widayat Widayat, 2019. "Consumer Willingness and Acceptance of Smart Meters in Indonesia," Resources, MDPI, vol. 8(4), pages 1-23, November.
    4. Beau Warbroek & Thomas Hoppe, 2017. "Modes of Governing and Policy of Local and Regional Governments Supporting Local Low-Carbon Energy Initiatives; Exploring the Cases of the Dutch Regions of Overijssel and Fryslân," Sustainability, MDPI, vol. 9(1), pages 1-36, January.
    5. Esther C. Van der Waal & Henny J. Van der Windt & Ellen C. J. Van Oost, 2018. "How Local Energy Initiatives Develop Technological Innovations: Growing an Actor Network," Sustainability, MDPI, vol. 10(12), pages 1-19, December.
    6. Hicks, Jarra & Ison, Nicola, 2018. "An exploration of the boundaries of ‘community’ in community renewable energy projects: Navigating between motivations and context," Energy Policy, Elsevier, vol. 113(C), pages 523-534.
    7. Anna Mengolini & Flavia Gangale & Julija Vasiljevska, 2016. "Exploring Community-Oriented Approaches in Demand Side Management Projects in Europe," Sustainability, MDPI, vol. 8(12), pages 1-12, December.
    8. Hanna Mela & Juha Peltomaa & Marja Salo & Kirsi Mäkinen & Mikael Hildén, 2018. "Framing Smart Meter Feedback in Relation to Practice Theory," Sustainability, MDPI, vol. 10(10), pages 1-22, October.
    9. Koirala, Binod Prasad & van Oost, Ellen & van der Windt, Henny, 2018. "Community energy storage: A responsible innovation towards a sustainable energy system?," Applied Energy, Elsevier, vol. 231(C), pages 570-585.
    10. Khosrowpour, Ardalan & Jain, Rishee K. & Taylor, John E. & Peschiera, Gabriel & Chen, Jiayu & Gulbinas, Rimas, 2018. "A review of occupant energy feedback research: Opportunities for methodological fusion at the intersection of experimentation, analytics, surveys and simulation," Applied Energy, Elsevier, vol. 218(C), pages 304-316.
    11. Schlindwein, L.F. & Montalvo, C., 2023. "Energy citizenship: Accounting for the heterogeneity of human behaviours within energy transition," Energy Policy, Elsevier, vol. 180(C).
    12. Sharmeen, Fariya & Ghosh, Bipashyee & Mateo-Babiano, Iderlina, 2021. "Policy, users and discourses: Examples from bikeshare programs in (Kolkata) India and (Manila) Philippines," Journal of Transport Geography, Elsevier, vol. 90(C).
    13. Schot, Johan & Steinmueller, W. Edward, 2018. "Three frames for innovation policy: R&D, systems of innovation and transformative change," Research Policy, Elsevier, vol. 47(9), pages 1554-1567.
    14. Whittle, Colin & Jones, Christopher R. & While, Aidan, 2020. "Empowering householders: Identifying predictors of intentions to use a home energy management system in the United Kingdom," Energy Policy, Elsevier, vol. 139(C).
    15. Binod Prasad Koirala & Ellen van Oost & Henny van der Windt, 2020. "Innovation Dynamics of Socio-Technical Alignment in Community Energy Storage: The Cases of DrTen and Ecovat," Energies, MDPI, vol. 13(11), pages 1-22, June.
    16. Shen, Meng & Lu, Yujie & Wei, Kua Harn & Cui, Qingbin, 2020. "Prediction of household electricity consumption and effectiveness of concerted intervention strategies based on occupant behaviour and personality traits," Renewable and Sustainable Energy Reviews, Elsevier, vol. 127(C).
    17. Gonçalves, Luisa & Patrício, Lia, 2022. "From smart technologies to value cocreation and customer engagement with smart energy services," Energy Policy, Elsevier, vol. 170(C).
    18. Valor, Carmen & Escudero, Carmen & Labajo, Victoria & Cossent, Rafael, 2019. "Effective design of domestic energy efficiency displays: A proposed architecture based on empirical evidence," Renewable and Sustainable Energy Reviews, Elsevier, vol. 114(C), pages 1-1.
    19. Margherita Pillan & Fiammetta Costa & Valentina Caiola, 2023. "How Could People and Communities Contribute to the Energy Transition? Conceptual Maps to Inform, Orient, and Inspire Design Actions and Education," Sustainability, MDPI, vol. 15(19), pages 1-31, October.
    20. Wu, Junqi & Niu, Zhibin & Li, Xiang & Huang, Lizhen & Nielsen, Per Sieverts & Liu, Xiufeng, 2023. "Understanding multi-scale spatiotemporal energy consumption data: A visual analysis approach," Energy, Elsevier, vol. 263(PD).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:256:y:2019:i:c:s0306261919314916. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.