IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v108y2013icp298-307.html
   My bibliography  Save this article

An experimental study of combustion and emissions of biomass pellets in a prototype pellet furnace

Author

Listed:
  • Roy, Murari Mohon
  • Dutta, Animesh
  • Corscadden, Kenny

Abstract

This study presents combustion and emission results obtained using a prototype pellet furnace with 7–32kW capacity (designed for burning high ash content pellet fuels) for four biomass pellets: one grass pellet and three wood pellets. Fuel property, gas emissions and furnace efficiency are compared. In regard to fuel properties, proximate analysis, ultimate analysis and heating values are determined and emissions of carbon monoxide (CO), nitric oxide (NO), nitrogen dioxide (NO2), nitrogen oxides (NOx) and sulfur dioxide (SO2) are measured and compared. Scanning electron microscopy (SEM) was used for ash analysis. No ash agglomeration was observed and ash discharge was in the form of powder instead of lumped particles, which are usually observed for high ash biomass fuel. The results suggest that grass pellets can successfully be combusted with similar performance and emissions to that of other wood pellets if burned in appropriate combustion installations.

Suggested Citation

  • Roy, Murari Mohon & Dutta, Animesh & Corscadden, Kenny, 2013. "An experimental study of combustion and emissions of biomass pellets in a prototype pellet furnace," Applied Energy, Elsevier, vol. 108(C), pages 298-307.
  • Handle: RePEc:eee:appene:v:108:y:2013:i:c:p:298-307
    DOI: 10.1016/j.apenergy.2013.03.044
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261913002407
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2013.03.044?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kallis, Kyriakos X. & Pellegrini Susini, Giacomo A. & Oakey, John E., 2013. "A comparison between Miscanthus and bioethanol waste pellets and their performance in a downdraft gasifier," Applied Energy, Elsevier, vol. 101(C), pages 333-340.
    2. Žandeckis, Aivars & Timma, Lelde & Blumberga, Dagnija & Rochas, Claudio & Rošā, Marika, 2013. "Solar and pellet combisystem for apartment buildings: Heat losses and efficiency improvements of the pellet boiler," Applied Energy, Elsevier, vol. 101(C), pages 244-252.
    3. Gokcol, Cihan & Dursun, Bahtiyar & Alboyaci, Bora & Sunan, Erkan, 2009. "Importance of biomass energy as alternative to other sources in Turkey," Energy Policy, Elsevier, vol. 37(2), pages 424-431, February.
    4. Roy, Murari Mohon & Corscadden, Kenny W., 2012. "An experimental study of combustion and emissions of biomass briquettes in a domestic wood stove," Applied Energy, Elsevier, vol. 99(C), pages 206-212.
    5. Bram, S. & De Ruyck, J. & Lavric, D., 2009. "Using biomass: A system perturbation analysis," Applied Energy, Elsevier, vol. 86(2), pages 194-201, February.
    6. Verma, V.K. & Bram, S. & Delattin, F. & Laha, P. & Vandendael, I. & Hubin, A. & De Ruyck, J., 2012. "Agro-pellets for domestic heating boilers: Standard laboratory and real life performance," Applied Energy, Elsevier, vol. 90(1), pages 17-23.
    7. Madlener, Reinhard & Koller, Martin, 2007. "Economic and CO2 mitigation impacts of promoting biomass heating systems: An input-output study for Vorarlberg, Austria," Energy Policy, Elsevier, vol. 35(12), pages 6021-6035, December.
    8. Carvalho, Lara & Wopienka, Elisabeth & Pointner, Christian & Lundgren, Joakim & Verma, Vijay Kumar & Haslinger, Walter & Schmidl, Christoph, 2013. "Performance of a pellet boiler fired with agricultural fuels," Applied Energy, Elsevier, vol. 104(C), pages 286-296.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wöhler, Marius & Jaeger, Dirk & Reichert, Gabriel & Schmidl, Christoph & Pelz, Stefan K., 2017. "Influence of pellet length on performance of pellet room heaters under real life operation conditions," Renewable Energy, Elsevier, vol. 105(C), pages 66-75.
    2. Lim, Mook Tzeng & Phan, Anh & Roddy, Dermot & Harvey, Adam, 2015. "Technologies for measurement and mitigation of particulate emissions from domestic combustion of biomass: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 574-584.
    3. Nataša Dragutinović & Isabel Höfer & Martin Kaltschmitt, 2021. "Fuel Improvement Measures for Particulate Matter Emission Reduction during Corn Cob Combustion," Energies, MDPI, vol. 14(15), pages 1-23, July.
    4. Roy, Murari Mohon & Corscadden, Kenny W., 2012. "An experimental study of combustion and emissions of biomass briquettes in a domestic wood stove," Applied Energy, Elsevier, vol. 99(C), pages 206-212.
    5. Sungur, Bilal & Basar, Cem & Kaleli, Alirıza, 2023. "Multi-objective optimisation of the emission parameters and efficiency of pellet stove at different supply airflow positions based on machine learning approach," Energy, Elsevier, vol. 278(PA).
    6. Carlon, Elisa & Verma, Vijay Kumar & Schwarz, Markus & Golicza, Laszlo & Prada, Alessandro & Baratieri, Marco & Haslinger, Walter & Schmidl, Christoph, 2015. "Experimental validation of a thermodynamic boiler model under steady state and dynamic conditions," Applied Energy, Elsevier, vol. 138(C), pages 505-516.
    7. Taro Mori & Yusuke Iwama & Hirofumi Hayama & Emad Mushtaha, 2020. "Optimization of a Wood Pellet Boiler System Combined with CO 2 HPs in a Cold Climate Area in Japan," Energies, MDPI, vol. 13(21), pages 1-17, October.
    8. Reichert, G. & Hartmann, H. & Haslinger, W. & Oehler, H. & Mack, R. & Schmidl, C. & Schön, C. & Schwabl, M. & Stressler, H. & Sturmlechner, R. & Hochenauer, C., 2017. "Effect of draught conditions and ignition technique on combustion performance of firewood roomheaters," Renewable Energy, Elsevier, vol. 105(C), pages 547-560.
    9. Vicente, E.D. & Vicente, A.M. & Evtyugina, M. & Tarelho, L.A.C. & Almeida, S.M. & Alves, C., 2020. "Emissions from residential combustion of certified and uncertified pellets," Renewable Energy, Elsevier, vol. 161(C), pages 1059-1071.
    10. Ozgen, S. & Cernuschi, S. & Caserini, S., 2021. "An overview of nitrogen oxides emissions from biomass combustion for domestic heat production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    11. Stanisławski, Rafał & Robert Junga, & Nitsche, Marek, 2022. "Reduction of the CO emission from wood pellet small-scale boiler using model-based control," Energy, Elsevier, vol. 243(C).
    12. Sungur, Bilal & Topaloğlu, Bahattin, 2020. "Experimental analysis of combustion performance of biodiesel absorbed pellets in a domestic boiler," Energy, Elsevier, vol. 201(C).
    13. Bala-Litwiniak, Agnieszka & Zajemska, Monika, 2020. "Computational and experimental study of pine and sunflower husk pellet combustion and co-combustion with oats in domestic boiler," Renewable Energy, Elsevier, vol. 162(C), pages 151-159.
    14. Díaz-Ramírez, Maryori & Sebastián, Fernando & Royo, Javier & Rezeau, Adeline, 2014. "Influencing factors on NOX emission level during grate conversion of three pelletized energy crops," Applied Energy, Elsevier, vol. 115(C), pages 360-373.
    15. Yarima Torreiro & Leticia Pérez & Gonzalo Piñeiro & Francisco Pedras & Angela Rodríguez-Abalde, 2020. "The Role of Energy Valuation of Agroforestry Biomass on the Circular Economy," Energies, MDPI, vol. 13(10), pages 1-13, May.
    16. Sungur, Bilal & Basar, Cem, 2023. "Experimental investigation of the effect of supply airflow position, excess air ratio and thermal power input at burner pot on the thermal and emission performances in a pellet stove," Renewable Energy, Elsevier, vol. 202(C), pages 1248-1258.
    17. Fournel, S. & Palacios, J.H. & Morissette, R. & Villeneuve, J. & Godbout, S. & Heitz, M. & Savoie, P., 2015. "Influence of biomass properties on technical and environmental performance of a multi-fuel boiler during on-farm combustion of energy crops," Applied Energy, Elsevier, vol. 141(C), pages 247-259.
    18. Verma, V.K. & Bram, S. & Delattin, F. & De Ruyck, J., 2013. "Real life performance of domestic pellet boiler technologies as a function of operational loads: A case study of Belgium," Applied Energy, Elsevier, vol. 101(C), pages 357-362.
    19. Sungur, Bilal & Topaloglu, Bahattin, 2019. "An experimental investigation of the effect of smoke tube configuration on the performance and emission characteristics of pellet-fuelled boilers," Renewable Energy, Elsevier, vol. 143(C), pages 121-129.
    20. Zhu, Youjian & Yang, Wei & Fan, Jiyuan & Kan, Tao & Zhang, Wennan & Liu, Heng & Cheng, Wei & Yang, Haiping & Wu, Xuehong & Chen, Hanping, 2018. "Effect of sodium carboxymethyl cellulose addition on particulate matter emissions during biomass pellet combustion," Applied Energy, Elsevier, vol. 230(C), pages 925-934.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:108:y:2013:i:c:p:298-307. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.