IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v101y2013icp357-362.html
   My bibliography  Save this article

Real life performance of domestic pellet boiler technologies as a function of operational loads: A case study of Belgium

Author

Listed:
  • Verma, V.K.
  • Bram, S.
  • Delattin, F.
  • De Ruyck, J.

Abstract

Emissions and efficiency of three different wood pellet boiler technologies in real life conditions were compared at two different operational loads. The test consortium comprised of one 15, 20 and 32kW boilers equipped with bottom feed burner, one 30kW boiler equipped with top feed burner and one 35kW boiler equipped with horizontal feed burner. The measurements comprised of carbon monoxide (CO), nitrogen oxide (NOx), dust and combustion efficiency. All boilers were fuelled with DINplus certified wood pellets.

Suggested Citation

  • Verma, V.K. & Bram, S. & Delattin, F. & De Ruyck, J., 2013. "Real life performance of domestic pellet boiler technologies as a function of operational loads: A case study of Belgium," Applied Energy, Elsevier, vol. 101(C), pages 357-362.
  • Handle: RePEc:eee:appene:v:101:y:2013:i:c:p:357-362
    DOI: 10.1016/j.apenergy.2012.02.017
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261912001110
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2012.02.017?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Madlener, Reinhard & Koller, Martin, 2007. "Economic and CO2 mitigation impacts of promoting biomass heating systems: An input-output study for Vorarlberg, Austria," Energy Policy, Elsevier, vol. 35(12), pages 6021-6035, December.
    2. Fiedler, Frank, 2004. "The state of the art of small-scale pellet-based heating systems and relevant regulations in Sweden, Austria and Germany," Renewable and Sustainable Energy Reviews, Elsevier, vol. 8(3), pages 201-221, June.
    3. Bram, S. & De Ruyck, J. & Lavric, D., 2009. "Using biomass: A system perturbation analysis," Applied Energy, Elsevier, vol. 86(2), pages 194-201, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lelis Fraga & Eduardo Ferreira & Pedro Ribeiro & Carlos Castro & Jorge Martins & José C. Teixeira, 2023. "Combustion Instability and Ash Agglomeration in Wood Pellets Boiler," Energies, MDPI, vol. 16(18), pages 1-18, September.
    2. Carlon, Elisa & Verma, Vijay Kumar & Schwarz, Markus & Golicza, Laszlo & Prada, Alessandro & Baratieri, Marco & Haslinger, Walter & Schmidl, Christoph, 2015. "Experimental validation of a thermodynamic boiler model under steady state and dynamic conditions," Applied Energy, Elsevier, vol. 138(C), pages 505-516.
    3. Rocío Collado & Esperanza Monedero & Víctor Manuel Casero-Alonso & Licesio J. Rodríguez-Aragón & Juan José Hernández, 2022. "Almond Shells and Exhausted Olive Cake as Fuels for Biomass Domestic Boilers: Optimization, Performance and Pollutant Emissions," Sustainability, MDPI, vol. 14(12), pages 1-17, June.
    4. Przemysław Motyl & Danuta Król & Sławomir Poskrobko & Marek Juszczak, 2020. "Numerical Modelling and Experimental Verification of the Low-Emission Biomass Combustion Process in a Domestic Boiler with Flue Gas Flow around the Combustion Chamber," Energies, MDPI, vol. 13(21), pages 1-16, November.
    5. Mollo, Malebo & Kolesnikov, Andrei & Makgato, Seshibe, 2022. "Simultaneous reduction of NOx emission and SOx emission aided by improved efficiency of a Once-Through Benson Type Coal Boiler," Energy, Elsevier, vol. 248(C).
    6. Sungur, Bilal & Basar, Cem, 2023. "Experimental investigation of the effect of supply airflow position, excess air ratio and thermal power input at burner pot on the thermal and emission performances in a pellet stove," Renewable Energy, Elsevier, vol. 202(C), pages 1248-1258.
    7. Fabrizio, Enrico & Seguro, Federico & Filippi, Marco, 2014. "Integrated HVAC and DHW production systems for Zero Energy Buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 40(C), pages 515-541.
    8. Büchner, Daniel & Schraube, Christian & Carlon, Elisa & von Sonntag, Justus & Schwarz, Markus & Verma, Vijay Kumar & Ortwein, Andreas, 2015. "Survey of modern pellet boilers in Austria and Germany – System design and customer satisfaction of residential installations," Applied Energy, Elsevier, vol. 160(C), pages 390-403.
    9. Wang, Kui & Zhang, Yuanyuan & Sekelj, Gasper & Hopke, Philip K., 2019. "Economic analysis of a field monitored residential wood pellet boiler heating system in New York State," Renewable Energy, Elsevier, vol. 133(C), pages 500-511.
    10. Zhao, Yulong & Wang, Shixue & Ge, Minghui & Li, Yanzhe & Liang, Zhaojun & Yang, Yurong, 2018. "Performance analysis of a thermoelectric generator applied to wet flue gas waste heat recovery," Applied Energy, Elsevier, vol. 228(C), pages 2080-2089.
    11. Vicente, E.D. & Vicente, A.M. & Evtyugina, M. & Tarelho, L.A.C. & Almeida, S.M. & Alves, C., 2020. "Emissions from residential combustion of certified and uncertified pellets," Renewable Energy, Elsevier, vol. 161(C), pages 1059-1071.
    12. Esperanza Monedero & Henar Portero & Magín Lapuerta, 2018. "Combustion of Poplar and Pine Pellet Blends in a 50 kW Domestic Boiler: Emissions and Combustion Efficiency," Energies, MDPI, vol. 11(6), pages 1-17, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Verma, V.K. & Bram, S. & Delattin, F. & Laha, P. & Vandendael, I. & Hubin, A. & De Ruyck, J., 2012. "Agro-pellets for domestic heating boilers: Standard laboratory and real life performance," Applied Energy, Elsevier, vol. 90(1), pages 17-23.
    2. Lim, Mook Tzeng & Phan, Anh & Roddy, Dermot & Harvey, Adam, 2015. "Technologies for measurement and mitigation of particulate emissions from domestic combustion of biomass: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 574-584.
    3. Verma, V.K. & Bram, S. & Vandendael, I. & Laha, P. & Hubin, A. & De Ruyck, J., 2011. "Residential pellet boilers in Belgium: Standard laboratory and real life performance with respect to European standard and quality labels," Applied Energy, Elsevier, vol. 88(8), pages 2628-2634, August.
    4. Reichert, G. & Hartmann, H. & Haslinger, W. & Oehler, H. & Mack, R. & Schmidl, C. & Schön, C. & Schwabl, M. & Stressler, H. & Sturmlechner, R. & Hochenauer, C., 2017. "Effect of draught conditions and ignition technique on combustion performance of firewood roomheaters," Renewable Energy, Elsevier, vol. 105(C), pages 547-560.
    5. Roy, Murari Mohon & Dutta, Animesh & Corscadden, Kenny, 2013. "An experimental study of combustion and emissions of biomass pellets in a prototype pellet furnace," Applied Energy, Elsevier, vol. 108(C), pages 298-307.
    6. Roy, Murari Mohon & Corscadden, Kenny W., 2012. "An experimental study of combustion and emissions of biomass briquettes in a domestic wood stove," Applied Energy, Elsevier, vol. 99(C), pages 206-212.
    7. Rubio Rodríguez, M.A. & Ruyck, J. De & Díaz, P. Roque & Verma, V.K. & Bram, S., 2011. "An LCA based indicator for evaluation of alternative energy routes," Applied Energy, Elsevier, vol. 88(3), pages 630-635, March.
    8. Damiete Emmanuel-Yusuf & Stephen Morse & Matthew Leach, 2017. "Resilience and Livelihoods in Supply Chains (RELISC): An Analytical Framework for the Development and Resilience of the UK Wood Fuel Sector," Sustainability, MDPI, vol. 9(4), pages 1-18, April.
    9. Kinoshita, Tsuguki & Ohki, Takashi & Yamagata, Yoshiki, 2010. "Woody biomass supply potential for thermal power plants in Japan," Applied Energy, Elsevier, vol. 87(9), pages 2923-2927, September.
    10. Tan, Raymond R. & Aviso, Kathleen B. & Barilea, Ivan U. & Culaba, Alvin B. & Cruz, Jose B., 2012. "A fuzzy multi-regional input–output optimization model for biomass production and trade under resource and footprint constraints," Applied Energy, Elsevier, vol. 90(1), pages 154-160.
    11. Reinhard Madlener & Stefan Vögtli, 2006. "Diffusion of bioenergy in urban areas: socio-economic analysis of the planned Swiss wood-fired cogeneration plant in Basel," CEPE Working paper series 06-53, CEPE Center for Energy Policy and Economics, ETH Zurich.
    12. Fiedler, Frank & Nordlander, Svante & Persson, Tomas & Bales, Chris, 2006. "Thermal performance of combined solar and pellet heating systems," Renewable Energy, Elsevier, vol. 31(1), pages 73-88.
    13. Silvia Banfi & Massimo Filippini & Andrea Horehájová, 2007. "Hedonic Price Functions for Zurich and Lugano with Special Focus on Electrosmog," CEPE Working paper series 07-57, CEPE Center for Energy Policy and Economics, ETH Zurich.
    14. Thomson, Harriet & Liddell, Christine, 2015. "The suitability of wood pellet heating for domestic households: A review of literature," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 1362-1369.
    15. Dandres, Thomas & Gaudreault, Caroline & Tirado-Seco, Pablo & Samson, Réjean, 2011. "Assessing non-marginal variations with consequential LCA: Application to European energy sector," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(6), pages 3121-3132, August.
    16. Míguez, J.L. & Morán, J.C. & Granada, E. & Porteiro, J., 2012. "Review of technology in small-scale biomass combustion systems in the European market," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(6), pages 3867-3875.
    17. repec:zbw:inwedp:432009 is not listed on IDEAS
    18. Carlon, Elisa & Verma, Vijay Kumar & Schwarz, Markus & Golicza, Laszlo & Prada, Alessandro & Baratieri, Marco & Haslinger, Walter & Schmidl, Christoph, 2015. "Experimental validation of a thermodynamic boiler model under steady state and dynamic conditions," Applied Energy, Elsevier, vol. 138(C), pages 505-516.
    19. Araceli Regueiro & Lucie Jezerská & David Patiño & Raquel Pérez-Orozco & Jan Nečas & Martin Žídek, 2017. "Experimental Study of the Viability of Low-Grade Biofuels in Small-Scale Appliances," Sustainability, MDPI, vol. 9(10), pages 1-16, October.
    20. Jenniches, Simon & Worrell, Ernst & Fumagalli, Elena, 2019. "Regional economic and environmental impacts of wind power developments: A case study of a German region," Energy Policy, Elsevier, vol. 132(C), pages 499-514.
    21. Buytaert, V. & Muys, B. & Devriendt, N. & Pelkmans, L. & Kretzschmar, J.G. & Samson, R., 2011. "Towards integrated sustainability assessment for energetic use of biomass: A state of the art evaluation of assessment tools," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(8), pages 3918-3933.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:101:y:2013:i:c:p:357-362. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.