IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v9y2017i10p1823-d114530.html
   My bibliography  Save this article

Experimental Study of the Viability of Low-Grade Biofuels in Small-Scale Appliances

Author

Listed:
  • Araceli Regueiro

    (Industrial Engineering School, University of Vigo, Campus Lagoas-Marcosende, s/n, 36310 Vigo, Spain)

  • Lucie Jezerská

    (VSB-TU Ostrava, Centre ENET, Bulk Solid Centre, 17. listopadu 15, 70833 Ostrava, Czech Republic)

  • David Patiño

    (Industrial Engineering School, University of Vigo, Campus Lagoas-Marcosende, s/n, 36310 Vigo, Spain)

  • Raquel Pérez-Orozco

    (Industrial Engineering School, University of Vigo, Campus Lagoas-Marcosende, s/n, 36310 Vigo, Spain)

  • Jan Nečas

    (VSB-TU Ostrava, Centre ENET, Bulk Solid Centre, 17. listopadu 15, 70833 Ostrava, Czech Republic)

  • Martin Žídek

    (VSB-TU Ostrava, Centre ENET, Bulk Solid Centre, 17. listopadu 15, 70833 Ostrava, Czech Republic)

Abstract

This experimental work aims to study the viability of making use of agricultural and forest residues as an alternative to produce biofuels for commercial devices. It focuses on the feasibility of three non-commercial biomass fuels in an underfed biomass pilot combustor with a power range of 7–12 kW th (500–800 kW/m 2 ). To carry out the investigation, the repeatability of the facility was studied using fuel with a high ash content. The relative deviations in the main parameters considered (combustion rate, gaseous emissions and particulate matter emissions) were below 10%. A feasibility analysis was performed by comparing the result obtained with a barley and leaf pellet with that obtained with a commercial wood pellet as a reference. The parameters used in this study were the operational parameters of the plant as well as the particle concentration and distribution, fouling and slagging. Comparing the results of the different fuels, it was determined that 25% leaf + 75% wood pellet (lp25) could be used as a commercial pellet with the incorporation of an additive. However, the two other fuels presented undesirable behavior characterized by high particle concentrations and notable amounts of slag.

Suggested Citation

  • Araceli Regueiro & Lucie Jezerská & David Patiño & Raquel Pérez-Orozco & Jan Nečas & Martin Žídek, 2017. "Experimental Study of the Viability of Low-Grade Biofuels in Small-Scale Appliances," Sustainability, MDPI, vol. 9(10), pages 1-16, October.
  • Handle: RePEc:gam:jsusta:v:9:y:2017:i:10:p:1823-:d:114530
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/9/10/1823/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/9/10/1823/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Aime Hilaire Tchapda & Sarma V. Pisupati, 2014. "A Review of Thermal Co-Conversion of Coal and Biomass/Waste," Energies, MDPI, vol. 7(3), pages 1-51, February.
    2. Verma, V.K. & Bram, S. & Delattin, F. & Laha, P. & Vandendael, I. & Hubin, A. & De Ruyck, J., 2012. "Agro-pellets for domestic heating boilers: Standard laboratory and real life performance," Applied Energy, Elsevier, vol. 90(1), pages 17-23.
    3. Lara Febrero & Enrique Granada & David Patiño & Pablo Eguía & Araceli Regueiro, 2015. "A Comparative Study of Fouling and Bottom Ash from Woody Biomass Combustion in a Fixed-Bed Small-Scale Boiler and Evaluation of the Analytical Techniques Used," Sustainability, MDPI, vol. 7(5), pages 1-19, May.
    4. Fiedler, Frank, 2004. "The state of the art of small-scale pellet-based heating systems and relevant regulations in Sweden, Austria and Germany," Renewable and Sustainable Energy Reviews, Elsevier, vol. 8(3), pages 201-221, June.
    5. Khodaei, Hassan & Guzzomi, Ferdinando & Yeoh, Guan H. & Regueiro, Araceli & Patiño, David, 2017. "An experimental study into the effect of air staging distribution and position on emissions in a laboratory scale biomass combustor," Energy, Elsevier, vol. 118(C), pages 1243-1255.
    6. Roy, Murari Mohon & Dutta, Animesh & Corscadden, Kenny, 2013. "An experimental study of combustion and emissions of biomass pellets in a prototype pellet furnace," Applied Energy, Elsevier, vol. 108(C), pages 298-307.
    7. Araceli Regueiro & David Patiño & Jacobo Porteiro & Enrique Granada & José Luis Míguez, 2016. "Effect of Air Staging Ratios on the Burning Rate and Emissions in an Underfeed Fixed-Bed Biomass Combustor," Energies, MDPI, vol. 9(11), pages 1-16, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Raquel Pérez-Orozco & David Patiño & Jacobo Porteiro & José Luís Míguez, 2020. "Novel Test Bench for the Active Reduction of Biomass Particulate Matter Emissions," Sustainability, MDPI, vol. 12(1), pages 1-13, January.
    2. Pérez-Orozco, Raquel & Patiño, David & Porteiro, Jacobo & Míguez, José Luis, 2020. "Bed cooling effects in solid particulate matter emissions during biomass combustion. A morphological insight," Energy, Elsevier, vol. 205(C).
    3. Araceli Regueiro & Lucie Jezerská & Raquel Pérez-Orozco & David Patiño & Jiří Zegzulka & Jan Nečas, 2019. "Viability Evaluation of Three Grass Biofuels: Experimental Study in a Small-Scale Combustor," Energies, MDPI, vol. 12(7), pages 1-19, April.
    4. Esperanza Monedero & Henar Portero & Magín Lapuerta, 2018. "Combustion of Poplar and Pine Pellet Blends in a 50 kW Domestic Boiler: Emissions and Combustion Efficiency," Energies, MDPI, vol. 11(6), pages 1-17, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Araceli Regueiro & Lucie Jezerská & Raquel Pérez-Orozco & David Patiño & Jiří Zegzulka & Jan Nečas, 2019. "Viability Evaluation of Three Grass Biofuels: Experimental Study in a Small-Scale Combustor," Energies, MDPI, vol. 12(7), pages 1-19, April.
    2. Ozgen, S. & Cernuschi, S. & Caserini, S., 2021. "An overview of nitrogen oxides emissions from biomass combustion for domestic heat production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    3. Sungur, Bilal & Topaloğlu, Bahattin, 2020. "Experimental analysis of combustion performance of biodiesel absorbed pellets in a domestic boiler," Energy, Elsevier, vol. 201(C).
    4. Sungur, Bilal & Topaloglu, Bahattin, 2019. "An experimental investigation of the effect of smoke tube configuration on the performance and emission characteristics of pellet-fuelled boilers," Renewable Energy, Elsevier, vol. 143(C), pages 121-129.
    5. Carlon, Elisa & Verma, Vijay Kumar & Schwarz, Markus & Golicza, Laszlo & Prada, Alessandro & Baratieri, Marco & Haslinger, Walter & Schmidl, Christoph, 2015. "Experimental validation of a thermodynamic boiler model under steady state and dynamic conditions," Applied Energy, Elsevier, vol. 138(C), pages 505-516.
    6. Raquel Pérez-Orozco & David Patiño & Jacobo Porteiro & José Luís Míguez, 2020. "Novel Test Bench for the Active Reduction of Biomass Particulate Matter Emissions," Sustainability, MDPI, vol. 12(1), pages 1-13, January.
    7. Pérez-Orozco, Raquel & Patiño, David & Porteiro, Jacobo & Míguez, José Luis, 2020. "Bed cooling effects in solid particulate matter emissions during biomass combustion. A morphological insight," Energy, Elsevier, vol. 205(C).
    8. Díaz-Ramírez, Maryori & Sebastián, Fernando & Royo, Javier & Rezeau, Adeline, 2014. "Influencing factors on NOX emission level during grate conversion of three pelletized energy crops," Applied Energy, Elsevier, vol. 115(C), pages 360-373.
    9. Sungur, Bilal & Basar, Cem, 2023. "Experimental investigation of the effect of supply airflow position, excess air ratio and thermal power input at burner pot on the thermal and emission performances in a pellet stove," Renewable Energy, Elsevier, vol. 202(C), pages 1248-1258.
    10. Horvat, Ivan & Dović, Damir & Filipović, Petar, 2021. "Numerical and experimental methods in development of the novel biomass combustion system concept for wood and agro pellets," Energy, Elsevier, vol. 231(C).
    11. Wöhler, Marius & Jaeger, Dirk & Reichert, Gabriel & Schmidl, Christoph & Pelz, Stefan K., 2017. "Influence of pellet length on performance of pellet room heaters under real life operation conditions," Renewable Energy, Elsevier, vol. 105(C), pages 66-75.
    12. Fournel, S. & Palacios, J.H. & Morissette, R. & Villeneuve, J. & Godbout, S. & Heitz, M. & Savoie, P., 2015. "Influence of biomass properties on technical and environmental performance of a multi-fuel boiler during on-farm combustion of energy crops," Applied Energy, Elsevier, vol. 141(C), pages 247-259.
    13. Juan Jesús Rico & Raquel Pérez-Orozco & Natalia Cid & Ana Larrañaga & José Luis Míguez Tabarés, 2020. "Viability of Agricultural and Forestry Residues as Biomass Fuels in the Galicia-North Portugal Region: An Experimental Study," Sustainability, MDPI, vol. 12(19), pages 1-20, October.
    14. Duong, Van Minh & Flener, Ursula & Hrbek, Jitka & Hofbauer, Hermann, 2022. "Emission characteristics from the combustion of Acacia Mangium in the automatic feeding pellet stove," Renewable Energy, Elsevier, vol. 186(C), pages 183-194.
    15. Nunes, L.J.R. & Matias, J.C.O. & Catalão, J.P.S., 2014. "Mixed biomass pellets for thermal energy production: A review of combustion models," Applied Energy, Elsevier, vol. 127(C), pages 135-140.
    16. El may, Yassine & Jeguirim, Mejdi & Dorge, Sophie & Trouvé, Gwenaelle & Said, Rachid, 2012. "Study on the thermal behavior of different date palm residues: Characterization and devolatilization kinetics under inert and oxidative atmospheres," Energy, Elsevier, vol. 44(1), pages 702-709.
    17. Ramos, Ana & Monteiro, Eliseu & Rouboa, Abel, 2019. "Numerical approaches and comprehensive models for gasification process: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 110(C), pages 188-206.
    18. Verma, V.K. & Bram, S. & Delattin, F. & Laha, P. & Vandendael, I. & Hubin, A. & De Ruyck, J., 2012. "Agro-pellets for domestic heating boilers: Standard laboratory and real life performance," Applied Energy, Elsevier, vol. 90(1), pages 17-23.
    19. Yi Zhang & Guanmin Zhang & Min Wei & Zhenqiang Gao & Maocheng Tian & Fang He, 2019. "Comparisons of Acid and Water Solubilities of Rice Straw Ash Together with Its Major Ash-Forming Elements at Different Ashing Temperatures: An Experimental Study," Sustainability, MDPI, vol. 11(7), pages 1-18, April.
    20. Masnadi, Mohammad S. & Grace, John R. & Bi, Xiaotao T. & Lim, C. Jim & Ellis, Naoko & Li, Yong Hua & Watkinson, A. Paul, 2015. "From coal towards renewables: Catalytic/synergistic effects during steam co-gasification of switchgrass and coal in a pilot-scale bubbling fluidized bed," Renewable Energy, Elsevier, vol. 83(C), pages 918-930.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:9:y:2017:i:10:p:1823-:d:114530. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.