IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v252y2021ics0378377421001657.html
   My bibliography  Save this article

Holistically valuing public investments in agricultural water conservation

Author

Listed:
  • Shew, Aaron M.
  • Nalley, Lawton L.
  • Durand-Morat, Alvaro
  • Meredith, Kylie
  • Parajuli, Ranjan
  • Thoma, Greg
  • Henry, Christopher G.

Abstract

Multiple Inlet Rice Irrigation (MIRI) reduces water use and production costs for Arkansas rice producers. While the water savings from MIRI have been analyzed experimentally, the overall holistic benefits of MIRI rice have yet to be quantified compared to cascade flooded rice. As such, this study evaluates the economic and environmental benefits of MIRI resulting from publicly funded research, in this case the Rice Checkoff, to continue improvements in agricultural sustainability. MIRI acreage associated with public funding from the Rice Checkoff for 2002–2018 were identified by county using producer surveys. Based on MIRI acreage, we estimate cost savings, the future value of water conserved, and reductions in environmental impacts comparing cascade and MIRI rice irrigation. Cost savings range from a low of $138,230 in 2002 to a high of $825,535 in 2008, with a total of $8,655,687 for all years. We estimated the total in situ value of conserved water from MIRI adoption associated with the Rice Checkoff to be $11,133,069. If future funding decisions for MIRI were only made based on cost savings it would underestimate the average total yearly benefits by 128%. Additionally, a Life Cycle Assessment was used to compare single score ecosystem impacts for cascade versus MIRI flooded rice based on 1 kg of rice produced. The single score, calculated as the externalized environmental cost for producing one kg of rice using cascade versus MIRI-flooded rice was estimated at $0.4066 and $0.3814, respectively; a reduction of $0.0252 per kg of MIRI-produced rice. Finally, a benefit-cost ratio of 79:1 was calculated after accounting for savings, in situ value, and reduced environmental impacts provided by MIRI adoption due to the Rice Checkoff. This study provides stakeholders a holistic picture of the economic impacts and environmental benefits provided by water conservation funded projects such as MIRI in Arkansas.

Suggested Citation

  • Shew, Aaron M. & Nalley, Lawton L. & Durand-Morat, Alvaro & Meredith, Kylie & Parajuli, Ranjan & Thoma, Greg & Henry, Christopher G., 2021. "Holistically valuing public investments in agricultural water conservation," Agricultural Water Management, Elsevier, vol. 252(C).
  • Handle: RePEc:eee:agiwat:v:252:y:2021:i:c:s0378377421001657
    DOI: 10.1016/j.agwat.2021.106900
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377421001657
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2021.106900?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Addicott, Ethan T. & Fenichel, Eli P., 2019. "Spatial aggregation and the value of natural capital," Journal of Environmental Economics and Management, Elsevier, vol. 95(C), pages 118-132.
    2. Turral, Hugh & Svendsen, Mark & Faures, Jean Marc, 2010. "Investing in irrigation: Reviewing the past and looking to the future," Agricultural Water Management, Elsevier, vol. 97(4), pages 551-560, April.
    3. Tsur, Yacov & Graham-Tomasi, Theodore, 1991. "The buffer value of groundwater with stochastic surface water supplies," Journal of Environmental Economics and Management, Elsevier, vol. 21(3), pages 201-224, November.
    4. Jeffrey M. Peterson & Ya Ding, 2005. "Economic Adjustments to Groundwater Depletion in the High Plains: Do Water-Saving Irrigation Systems Save Water?," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 87(1), pages 147-159.
    5. Pfeiffer, Lisa & Lin, C.-Y. Cynthia, 2014. "Does efficient irrigation technology lead to reduced groundwater extraction? Empirical evidence," Journal of Environmental Economics and Management, Elsevier, vol. 67(2), pages 189-208.
    6. Julian M. Alston & Philip G. Pardey, 1996. "Making Science Pay: The Economics of Agricultural R&D Policy," Books, American Enterprise Institute, number 53242, September.
    7. L. Allen Torell & James D. Libbin & Michael D. Miller, 1990. "The Market Value of Water in the Ogallala Aquifer," Land Economics, University of Wisconsin Press, vol. 66(2), pages 163-175.
    8. Suter, Jordan F. & Rouhi Rad, Mani & Manning, Dale T. & Goemans, Chris & Sanderson, Matthew R., 2021. "Depletion, climate, and the incremental value of groundwater," Resource and Energy Economics, Elsevier, vol. 63(C).
    9. Eli Feinerman & Keith C. Knapp, 1983. "Benefits from Groundwater Management: Magnitude, Sensitivity, and Distribution," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 65(4), pages 703-710.
    10. John Lenz & Harry M. Kaiser & Chanjin Chung, 1998. "Economic analysis of generic milk advertising impacts on markets in New York State," Agribusiness, John Wiley & Sons, Ltd., vol. 14(1), pages 73-83.
    11. Gary W. Williams, 1999. "Commodity checkoff programs as alternative producer investment opportunities: The case of soybeans," Agribusiness, John Wiley & Sons, Ltd., vol. 15(4), pages 539-552.
    12. Aaron M Shew & Alvaro Durand-Morat & Lawton L Nalley & Xin-Gen Zhou & Clemencia Rojas & Greg Thoma, 2019. "Warming increases Bacterial Panicle Blight (Burkholderia glumae) occurrences and impacts on USA rice production," PLOS ONE, Public Library of Science, vol. 14(7), pages 1-18, July.
    13. Capps, Oral & Bessler, David A. & Williams, Gary W., 2016. "The Ramifications of Nearly Going Dark: A Natural Experiment in the Case of U.S. Generic Orange Juice Advertising," Agricultural and Resource Economics Review, Cambridge University Press, vol. 45(1), pages 68-97, April.
    14. Aaron Michael Shew & Alvaro Durand‐Morat & Lawton Lanier Nalley & Karen Ann‐Kuenzel Moldenhauer, 2018. "Estimating the benefits of public plant breeding: beyond profits," Agricultural Economics, International Association of Agricultural Economists, vol. 49(6), pages 753-764, November.
    15. Todd M. Schmit & J. Carlos Reberte & Harry M. Kaiser, 1997. "An economic analysis of generic egg advertising in California, 1985-1995," Agribusiness, John Wiley & Sons, Ltd., vol. 13(4), pages 365-373.
    16. Sampson, Gabriel S. & Hendricks, Nathan P. & Taylor, Mykel R., 2019. "Land market valuation of groundwater," Resource and Energy Economics, Elsevier, vol. 58(C).
    17. Ward, Ronald W., 2006. "Commodity Checkoff Programs and Generic Advertising," Choices: The Magazine of Food, Farm, and Resource Issues, Agricultural and Applied Economics Association, vol. 21(2), pages 1-6.
    18. Bo P Weidema, 2015. "Comparing Three Life Cycle Impact Assessment Methods from an Endpoint Perspective," Journal of Industrial Ecology, Yale University, vol. 19(1), pages 20-26, February.
    19. Capps, Oral & Bessler, David A. & Williams, Gary W., 2016. "The Ramifications of Nearly Going Dark: A Natural Experiment in the Case of U.S. Generic Orange Juice Advertising," Agricultural and Resource Economics Review, Cambridge University Press, vol. 45(1), pages 68-97, April.
    20. Haoyang Li & Jinhua Zhao, 2018. "Rebound Effects of New Irrigation Technologies: The Role of Water Rights," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 100(3), pages 786-808.
    21. DeLonge, Marcia S. & Miles, Albie & Carlisle, Liz, 2016. "Investing in the transition to sustainable agriculture," Environmental Science & Policy, Elsevier, vol. 55(P1), pages 266-273.
    22. Weidema, Bo Pedersen, 2009. "Using the budget constraint to monetarise impact assessment results," Ecological Economics, Elsevier, vol. 68(6), pages 1591-1598, April.
    23. Julian M. Alston, 2010. "The Benefits from Agricultural Research and Development, Innovation, and Productivity Growth," OECD Food, Agriculture and Fisheries Papers 31, OECD Publishing.
    24. Terrance M. Hurley & Xudong Rao & Philip G. Pardey, 2014. "Re-examining the Reported Rates of Return to Food and Agricultural Research and Development," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 96(5), pages 1492-1504.
    25. Harry M. Kaiser, 2003. "Distribution of benefits and costs of commodity checkoff programs: Introductory remarks," Agribusiness, John Wiley & Sons, Ltd., vol. 19(3), pages 273-275.
    26. Lawton Nalley & Francis Tsiboe & Alvaro Durand-Morat & Aaron Shew & Greg Thoma, 2016. "Economic and Environmental Impact of Rice Blast Pathogen (Magnaporthe oryzae) Alleviation in the United States," PLOS ONE, Public Library of Science, vol. 11(12), pages 1-15, December.
    27. Manning, Dale T. & Rad, Mani Rouhi & Suter, Jordan F. & Goemans, Christopher & Xiang, Zaichen & Bailey, Ryan, 2020. "Non-market valuation in integrated assessment modeling: The benefits of water right retirement," Journal of Environmental Economics and Management, Elsevier, vol. 103(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Nalley, Lawton Lanier & Massey, Joseph & Durand-Morat, Alvaro & Shew, Aaron & Parajuli, Ranjan & Tsiboe, Francis, 2022. "Comparative economic and environmental assessments of furrow- and flood-irrigated rice production systems," Agricultural Water Management, Elsevier, vol. 274(C).
    2. Kristofor R. Brye & Niyi S. Omidire & Leah English & Ranjan Parajuli & Laszlo Kekedy-Nagy & Ruhi Sultana & Jennie Popp & Greg Thoma & Trenton L. Roberts & Lauren F. Greenlee, 2022. "Assessment of Struvite as an Alternative Sources of Fertilizer-Phosphorus for Flood-Irrigated Rice," Sustainability, MDPI, vol. 14(15), pages 1-21, August.
    3. Joan Pujol & Francesc X. Espinach & Miquel Duran-Ros & Gerard Arbat & Toni Pujol & Francisco Ramírez de Cartagena & Jaume Puig-Bargués, 2022. "Environmental Assessment of Underdrain Designs for Granular Media Filters in Drip Irrigation Systems," Agriculture, MDPI, vol. 12(6), pages 1-14, June.
    4. Melstrom, Richard T. & Malone, Trey, 2023. "Voter evaluations regarding the tradeoffs between agricultural production and water quality in Lake Erie," Agricultural Water Management, Elsevier, vol. 287(C).
    5. Darzi-Naftchali, Abdullah & Motevali, Ali & Keikha, Mahdi, 2022. "The life cycle assessment of subsurface drainage performance under rice-canola cropping system," Agricultural Water Management, Elsevier, vol. 266(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Suarez, Federico & Fulginiti, Lilyan & Perrin, Richard, 2015. "The Value of Water in Agriculture: The U.S. High Plains Aquifer," 2015 Conference, August 9-14, 2015, Milan, Italy 211644, International Association of Agricultural Economists.
    2. Louis Sears & Joseph Caparelli & Clouse Lee & Devon Pan & Gillian Strandberg & Linh Vuu & C. -Y. Cynthia Lin Lawell, 2018. "Jevons’ Paradox and Efficient Irrigation Technology," Sustainability, MDPI, vol. 10(5), pages 1-12, May.
    3. Xie, Yang & Zilberman, David, 2014. "The Economics of Water Project Capacities and Conservation Technologies," 2014 Annual Meeting, July 27-29, 2014, Minneapolis, Minnesota 169820, Agricultural and Applied Economics Association.
    4. Hang Xu & Rui Yang & Jianfeng Song, 2021. "Agricultural Water Use Efficiency and Rebound Effect: A Study for China," IJERPH, MDPI, vol. 18(13), pages 1-16, July.
    5. Sampson, Gabriel S. & Hendricks, Nathan P. & Taylor, Mykel R., 2019. "Land market valuation of groundwater," Resource and Energy Economics, Elsevier, vol. 58(C).
    6. Smith, Steven M., 2018. "Economic incentives and conservation: Crowding-in social norms in a groundwater commons," Journal of Environmental Economics and Management, Elsevier, vol. 90(C), pages 147-174.
    7. Xie, Yang & Zilberman, David, 2015. "Water Storage Capacities versus Water Use Efficiency: Substitutes or Complements?," 2015 AAEA & WAEA Joint Annual Meeting, July 26-28, San Francisco, California 205439, Agricultural and Applied Economics Association.
    8. Dietrich Earnhart & Nathan P. Hendricks, 2023. "Adapting to water restrictions: Intensive versus extensive adaptation over time differentiated by water right seniority," American Journal of Agricultural Economics, John Wiley & Sons, vol. 105(5), pages 1458-1490, October.
    9. Phoebe Koundouri, 2004. "Current Issues in the Economics of Groundwater Resource Management," Journal of Economic Surveys, Wiley Blackwell, vol. 18(5), pages 703-740, December.
    10. Wang, Tong & Park, Seong & Jin, Hailong, 2016. "Will Farmers Save Water? A Theoretical Analysis of Groundwater Conservation Policies for Ogallala Aquifer," 2016 Annual Meeting, February 6-9, 2016, San Antonio, Texas 229904, Southern Agricultural Economics Association.
    11. Capps, O., . "Targeted Advertising and Promotion Campaigns_A Case Study of the National Pork Board," Journal of Agribusiness, Agricultural Economics Association of Georgia, vol. 38(1).
    12. Batie, Cicely M. & Dennis, Elliott J. & Lubben, Bradley D., 2020. "Do state-level agricultural promotion programs increase agricultural output? The case of the Livestock Friendly County designation program in Nebraska," 2020 Annual Meeting, July 26-28, Kansas City, Missouri 304399, Agricultural and Applied Economics Association.
    13. Fei, Rilong & Xie, Mengyuan & Wei, Xin & Ma, Ding, 2021. "Has the water rights system reform restrained the water rebound effect? Empirical analysis from China's agricultural sector," Agricultural Water Management, Elsevier, vol. 246(C).
    14. Manning, Dale T. & Rad, Mani Rouhi & Suter, Jordan F. & Goemans, Christopher & Xiang, Zaichen & Bailey, Ryan, 2020. "Non-market valuation in integrated assessment modeling: The benefits of water right retirement," Journal of Environmental Economics and Management, Elsevier, vol. 103(C).
    15. R. Aaron Hrozencik & Jordan F. Suter & Paul J. Ferraro & Nathan Hendricks, 2024. "Social comparisons and groundwater use: Evidence from Colorado and Kansas," American Journal of Agricultural Economics, John Wiley & Sons, vol. 106(2), pages 946-966, March.
    16. Bertone Oehninger, Ernst & Lin Lawell, C.-Y. Cynthia, 2021. "Property rights and groundwater management in the High Plains Aquifer," Resource and Energy Economics, Elsevier, vol. 63(C).
    17. Nalley, Lawton Lanier & Massey, Joseph & Durand-Morat, Alvaro & Shew, Aaron & Parajuli, Ranjan & Tsiboe, Francis, 2022. "Comparative economic and environmental assessments of furrow- and flood-irrigated rice production systems," Agricultural Water Management, Elsevier, vol. 274(C).
    18. Aaron M Shew & Alvaro Durand-Morat & Lawton L Nalley & Xin-Gen Zhou & Clemencia Rojas & Greg Thoma, 2019. "Warming increases Bacterial Panicle Blight (Burkholderia glumae) occurrences and impacts on USA rice production," PLOS ONE, Public Library of Science, vol. 14(7), pages 1-18, July.
    19. Lee, Juhee & Hendricks, Nathan, 2022. "Irrigation Decisions in Response to Groundwater Salinity in Kansas," Journal of Agricultural and Resource Economics, Western Agricultural Economics Association, vol. 47(3), September.
    20. Daniel Cooley & Steven M. Smith, 2022. "Center Pivot Irrigation Systems as a Form of Drought Risk Mitigation in Humid Regions," NBER Chapters, in: American Agriculture, Water Resources, and Climate Change, pages 135-171, National Bureau of Economic Research, Inc.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:252:y:2021:i:c:s0378377421001657. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.