IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v194y2017icp192-203.html
   My bibliography  Save this article

Economic and policy drivers of agricultural water desalination in California’s central valley

Author

Listed:
  • Welle, Paul D.
  • Medellín-Azuara, Josué
  • Viers, Joshua H.
  • Mauter, Meagan S.

Abstract

Water desalination is a proposed solution for mitigating the effects of drought, soil salinization, and the ecological impacts of agricultural drainage. In this study, we assess the public and private costs and benefits of distributed desalination in the Central Valley (CV) of California. We employ environmental and economic modeling to estimate the value of reducing the salinity of irrigation water; the value of augmenting water supply under present and future climate scenarios; and the human health, environmental, and climate change damages associated with generating power to desalinate water. We find that water desalination is only likely to be profitable in 4% of the CV during periods of severe drought, and that current costs would need to decrease by 70–90% for adoption to occur on the median acre. Fossil-fuel powered desalination technologies also generate air emissions that impose significant public costs in the form of human health and climate change damages, although these damages vary greatly depending on technology. The ecosystem service benefits of reduced agricultural drainage would need to be valued between $800 and $1200 per acre-foot, or nearly the full capital and operational costs of water desalination, for the net benefits of water desalination to be positive from a societal perspective.

Suggested Citation

  • Welle, Paul D. & Medellín-Azuara, Josué & Viers, Joshua H. & Mauter, Meagan S., 2017. "Economic and policy drivers of agricultural water desalination in California’s central valley," Agricultural Water Management, Elsevier, vol. 194(C), pages 192-203.
  • Handle: RePEc:eee:agiwat:v:194:y:2017:i:c:p:192-203
    DOI: 10.1016/j.agwat.2017.07.024
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377417302536
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2017.07.024?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Muller, Nicholas Z. & Mendelsohn, Robert, 2007. "Measuring the damages of air pollution in the United States," Journal of Environmental Economics and Management, Elsevier, vol. 54(1), pages 1-14, July.
    2. Stephen Smith & Nils Axel Braathen, 2015. "Monetary Carbon Values in Policy Appraisal: An Overview of Current Practice and Key Issues," OECD Environment Working Papers 92, OECD Publishing.
    3. Stuber, Matthew D., 2016. "Optimal design of fossil-solar hybrid thermal desalination for saline agricultural drainage water reuse," Renewable Energy, Elsevier, vol. 89(C), pages 552-563.
    4. Kurt A. Schwabe & Iddo Kan & Keith C. Knapp, 2006. "Drainwater Management for Salinity Mitigation in Irrigated Agriculture," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 88(1), pages 133-149.
    5. Jianping Huang & Haipeng Yu & Xiaodan Guan & Guoyin Wang & Ruixia Guo, 2016. "Accelerated dryland expansion under climate change," Nature Climate Change, Nature, vol. 6(2), pages 166-171, February.
    6. Richard E. Howitt, 1995. "Positive Mathematical Programming," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 77(2), pages 329-342.
    7. David Lobell & Christopher Field, 2011. "California perennial crops in a changing climate," Climatic Change, Springer, vol. 109(1), pages 317-333, December.
    8. Muller Nicholas Z, 2011. "Linking Policy to Statistical Uncertainty in Air Pollution Damages," The B.E. Journal of Economic Analysis & Policy, De Gruyter, vol. 11(1), pages 1-29, June.
    9. Wichelns, Dennis & Oster, J.D., 2006. "Sustainable irrigation is necessary and achievable, but direct costs and environmental impacts can be substantial," Agricultural Water Management, Elsevier, vol. 86(1-2), pages 114-127, November.
    10. Josué Medellín-Azuara & Richard Howitt & Duncan MacEwan & Jay Lund, 2011. "Economic impacts of climate-related changes to California agriculture," Climatic Change, Springer, vol. 109(1), pages 387-405, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Aein, Reza & Alizadeh, Hosein, 2021. "Integrated hydro-economic modeling for optimal design of development scheme of salinity affected irrigated agriculture in Helleh River Basin," Agricultural Water Management, Elsevier, vol. 243(C).
    2. Debora Silva Queiroz & Maria da Glória Motta Garcia & Paulo Pereira, 2022. "Criteria for Selecting Areas to Identify Ecosystem Services Provided by Geodiversity: A Study on the Coast of São Paulo, Brazil," Resources, MDPI, vol. 11(10), pages 1-14, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Arisha Ashraf & Ariel Dinar & Érika Monteiro & Todd Gaston, 2016. "Adaptation In California Agriculture: What Have We Been Assessing For Two And A Half Decades?," Climate Change Economics (CCE), World Scientific Publishing Co. Pte. Ltd., vol. 7(02), pages 1-19, May.
    2. Amber Kerr & Jake Dialesandro & Kerri Steenwerth & Nathan Lopez-Brody & Emile Elias, 2018. "Vulnerability of California specialty crops to projected mid-century temperature changes," Climatic Change, Springer, vol. 148(3), pages 419-436, June.
    3. Muller, Nicholas Z., 2012. "The design of optimal climate policy with air pollution co-benefits," Resource and Energy Economics, Elsevier, vol. 34(4), pages 696-722.
    4. Bradley Franklin & Kurt Schwabe & Lucia Levers, 2021. "Perennial Crop Dynamics May Affect Long-Run Groundwater Levels," Land, MDPI, vol. 10(9), pages 1-18, September.
    5. Michael Hanemann & Susan Stratton Sayre & Larry Dale, 2016. "The downside risk of climate change in California’s Central Valley agricultural sector," Climatic Change, Springer, vol. 137(1), pages 15-27, July.
    6. Jaramillo, Paulina & Muller, Nicholas Z., 2016. "Air pollution emissions and damages from energy production in the U.S.: 2002–2011," Energy Policy, Elsevier, vol. 90(C), pages 202-211.
    7. Chan, H. Ron & Chupp, B. Andrew & Cropper, Maureen & Muller, Nicholas Z., 2015. "The Net Benefits of the Acid Rain Program: What Can We Learn from the Grand Policy Experiment?," RFF Working Paper Series dp-15-25, Resources for the Future.
    8. Connor, Jeffery D. & Schwabe, Kurt & King, Darran & Knapp, Keith, 2012. "Irrigated agriculture and climate change: The influence of water supply variability and salinity on adaptation," Ecological Economics, Elsevier, vol. 77(C), pages 149-157.
    9. Muller, Nicholas Z., 2019. "The derivation of discount rates with an augmented measure of income," Journal of Environmental Economics and Management, Elsevier, vol. 95(C), pages 87-101.
    10. Nicholas Z. Muller, 2014. "Air Pollution Damages from Offshore Energy Production," The Energy Journal, International Association for Energy Economics, vol. 0(Number 4).
    11. Mosavi, Seyed Habibollah & Soltani, Shiva & Khalilian, Sadegh, 2020. "Coping with climate change in agriculture: Evidence from Hamadan-Bahar plain in Iran," Agricultural Water Management, Elsevier, vol. 241(C).
    12. Karen Clay & Akshaya Jha & Nicholas Muller & Randall Walsh, 2017. "The External Costs of Transporting Petroleum Products by Pipelines and Rail: Evidence From Shipments of Crude Oil from North Dakota," NBER Working Papers 23852, National Bureau of Economic Research, Inc.
    13. Lee, Hwarang & Eom, Jiyong & Cho, Cheolhung & Koo, Yoonmo, 2019. "A bottom-up model of industrial energy system with positive mathematical programming," Energy, Elsevier, vol. 173(C), pages 679-690.
    14. V. Kerry Smith, 2018. "Benefits Transfer: Current Practice and Prospects," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 69(3), pages 449-466, March.
    15. Boris O. K. Lokonon & Aklesso Y. G. Egbendewe & Naga Coulibaly & Calvin Atewamba, 2019. "The Potential Impact Of Climate Change On Agriculture In West Africa: A Bio-Economic Modeling Approach," Climate Change Economics (CCE), World Scientific Publishing Co. Pte. Ltd., vol. 10(04), pages 1-30, November.
    16. Wichelns, Dennis & Qadir, Manzoor, 2015. "Achieving sustainable irrigation requires effective management of salts, soil salinity, and shallow groundwater," Agricultural Water Management, Elsevier, vol. 157(C), pages 31-38.
    17. Cao, Zhaodan & Zhu, Tingju & Cai, Ximing, 2023. "Hydro-agro-economic optimization for irrigated farming in an arid region: The Hetao Irrigation District, Inner Mongolia," Agricultural Water Management, Elsevier, vol. 277(C).
    18. Britz, Wolfgang & Linda, Arata, "undated". "How Important Are Crop Shares In Managing Risk For Specialized Arable Farms? A Panel Estimation Of A Programming Model For Three European Regions," 56th Annual Conference, Bonn, Germany, September 28-30, 2016 244801, German Association of Agricultural Economists (GEWISOLA).
    19. LaPlue, Lawrence D., 2022. "Environmental consequences of natural gas wellhead pricing deregulation," Journal of Environmental Economics and Management, Elsevier, vol. 116(C).
    20. Kooten, G. Cornelis van, 2013. "Modeling Forest Trade in Logs and Lumber: Qualitative and Quantitative Analysis," Working Papers 149182, University of Victoria, Resource Economics and Policy.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:194:y:2017:i:c:p:192-203. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.