IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v153y2015icp20-31.html
   My bibliography  Save this article

Shadow price of water for irrigation—A case of the High Plains

Author

Listed:
  • Ziolkowska, Jadwiga R.

Abstract

The 2011 and 2012 droughts considerably affected the Ogallala Aquifer supplying irrigation water for agricultural production in the US High Plains (HP). Shrinking water resources and growing demand for water create a challenging tradeoff situation. This also poses a question about the value of water and efficient water allocation. Currently, water rates for irrigating crops paid by farmers do not reflect the actual value of water that can be expressed solely as a shadow price. Also studies are missing that would comprehensively compare different states and different crops in one methodological framework. This paper helps to fill this gap. Farm-budget residual valuation is applied to estimate the shadow price of water for irrigation in three High Plains states: Texas, Kansas and Nebraska, for five prevailing crops: corn, cotton, sorghum, soybean, and wheat.

Suggested Citation

  • Ziolkowska, Jadwiga R., 2015. "Shadow price of water for irrigation—A case of the High Plains," Agricultural Water Management, Elsevier, vol. 153(C), pages 20-31.
  • Handle: RePEc:eee:agiwat:v:153:y:2015:i:c:p:20-31
    DOI: 10.1016/j.agwat.2015.01.024
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377415000426
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2015.01.024?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Glenn-Marie Lange, 2006. "Case Studies of Water Valuation in Namibia's Commercial Farming Areas," Chapters, in: The Economics of Water Management in Southern Africa, chapter 8, Edward Elgar Publishing.
    2. Gomez-Limon, Jose A. & Riesgo, Laura, 2004. "Irrigation water pricing: differential impacts on irrigated farms," Agricultural Economics, Blackwell, vol. 31(1), pages 47-66, July.
    3. Dan Rigby & Francisco Alcon & Michael Burton, 2010. "Supply uncertainty and the economic value of irrigation water," European Review of Agricultural Economics, Oxford University Press and the European Agricultural and Applied Economics Publications Foundation, vol. 37(1), pages 97-117, March.
    4. Xiuli Liu & Xikang Chen & Shouyang Wang, 2009. "Evaluating and Predicting Shadow Prices of Water Resources in China and Its Nine Major River Basins," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 23(8), pages 1467-1478, June.
    5. Julio Berbel & M. Mesa-Jurado & Juan Pistón, 2011. "Value of Irrigation Water in Guadalquivir Basin (Spain) by Residual Value Method," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 25(6), pages 1565-1579, April.
    6. Young, Robert A. & Haveman, Robert H., 1985. "Economics of water resources: a survey," Handbook of Natural Resource and Energy Economics, in: A. V. Kneese† & J. L. Sweeney (ed.), Handbook of Natural Resource and Energy Economics, edition 1, volume 2, chapter 11, pages 465-529, Elsevier.
    7. Hellegers, Petra & Davidson, Brian, 2010. "Determining the disaggregated economic value of irrigation water in the Musi sub-basin in India," Agricultural Water Management, Elsevier, vol. 97(6), pages 933-938, June.
    8. R. C. D'Arge & K. C. Kogiku, 1973. "Economic Growth and the Environment," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 40(1), pages 61-77.
    9. José A. Gómez‐Limón & Manuel Arriaza & Julio Berbel, 2002. "Conflicting Implementation of Agricultural and Water Policies in Irrigated Areas in the EU," Journal of Agricultural Economics, Wiley Blackwell, vol. 53(2), pages 259-281, July.
    10. Lilienfeld, Amy & Asmild, Mette, 2007. "Estimation of excess water use in irrigated agriculture: A Data Envelopment Analysis approach," Agricultural Water Management, Elsevier, vol. 94(1-3), pages 73-82, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. A. Bellver-Domingo & F. Hernández-Sancho, 2018. "Environmental Benefit of Improving Wastewater Quality: A Shadow Prices Approach for Sensitive Areas," Water Economics and Policy (WEP), World Scientific Publishing Co. Pte. Ltd., vol. 4(02), pages 1-15, April.
    2. Zamani, Omid & Azadi, Hossein & Mortazavi, Seyed Abolghasem & Balali, Hamid & Moghaddam, Saghi Movahhed & Jurik, Lubos, 2021. "The impact of water-pricing policies on water productivity: Evidence of agriculture sector in Iran," Agricultural Water Management, Elsevier, vol. 245(C).
    3. Bopp, Carlos & Jara-Rojas, Roberto & Bravo-Ureta, Boris & Engler, Alejandra, 2022. "Irrigation water use, shadow values and productivity: Evidence from stochastic production frontiers in vineyards," Agricultural Water Management, Elsevier, vol. 271(C).
    4. Yubing Wang & Kai Zhu & Xiao Xiong & Jianuo Yin & Haoran Yan & Yuan Zhang & Hai Liu, 2022. "Assessment of the Ecological Compensation Standards for Cross-Basin Water Diversion Projects from the Perspective of Main Headwater and Receiver Areas," IJERPH, MDPI, vol. 20(1), pages 1-31, December.
    5. Changhai Qin & Shan Jiang & Yong Zhao & Yongnan Zhu & Qingming Wang & Lizhen Wang & Junlin Qu & Ming Wang, 2022. "Research on Water Rights Trading and Pricing Model between Agriculture and Energy Development in Ningxia, China," Sustainability, MDPI, vol. 14(23), pages 1-15, November.
    6. Shen, Xiaobo & Lin, Boqiang, 2017. "The shadow prices and demand elasticities of agricultural water in China: A StoNED-based analysis," Resources, Conservation & Recycling, Elsevier, vol. 127(C), pages 21-28.
    7. Shaofeng Jia & Qiubo Long & Raymond Yu Wang & Jiabo Yan & Deyong Kang, 2016. "On the Inapplicability of the Cobb-Douglas Production Function for Estimating the Benefit of Water Use and the Value of Water Resources," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(10), pages 3645-3650, August.
    8. Portoghese, Ivan & Giannoccaro, Giacomo & Giordano, Raffaele & Pagano, Alessandro, 2021. "Modeling the impacts of volumetric water pricing in irrigation districts with conjunctive use of surface and groundwater resources," Agricultural Water Management, Elsevier, vol. 244(C).
    9. Steward, David R. & Allen, Andrew J., 2016. "Peak groundwater depletion in the High Plains Aquifer, projections from 1930 to 2110," Agricultural Water Management, Elsevier, vol. 170(C), pages 36-48.
    10. Alves, Gabriel de Sampaio Morais & Fulginiti, Lilyan & Perrin, Richard & Braga, Marcelo José, 2021. "The Use Value of Irrigation Water for Brazilian Agriculture," 2021 Conference, August 17-31, 2021, Virtual 315861, International Association of Agricultural Economists.
    11. Jacqueline M. Vadjunec & Amy E. Frazier & Peter Kedron & Todd Fagin & Yun Zhao, 2018. "A Land Systems Science Framework for Bridging Land System Architecture and Landscape Ecology: A Case Study from the Southern High Plains," Land, MDPI, vol. 7(1), pages 1-20, February.
    12. Alcon, Francisco & Zabala, José A. & Martínez-García, Victor & Albaladejo, José A. & López-Becerra, Erasmo I. & de-Miguel, María D. & Martínez-Paz, José M., 2022. "The social wellbeing of irrigation water. A demand-side integrated valuation in a Mediterranean agroecosystem," Agricultural Water Management, Elsevier, vol. 262(C).
    13. Aina, Ifedotun V. & Thiam, Djiby Racine & Dinar, Ariel, 2023. "Hydro-economic Modelling of irrigated Agriculture Water Use: Evidence from an inter-basin transfer scheme in Southern Africa," 2023 Annual Meeting, July 23-25, Washington D.C. 335539, Agricultural and Applied Economics Association.
    14. Josef Slaboch & Lukáš Čechura & Michal Malý & Jiří Mach, 2022. "The Shadow Values of Soil Hydrological Properties in the Production Potential of Climatic Regionalization of the Czech Republic," Agriculture, MDPI, vol. 12(12), pages 1-21, December.
    15. Walsh, Michael J. & Gerber Van Doren, Léda & Shete, Nilam & Prakash, Akshay & Salim, Usama, 2018. "Financial tradeoffs of energy and food uses of algal biomass under stochastic conditions," Applied Energy, Elsevier, vol. 210(C), pages 591-603.
    16. Aixi Han & Ao Liu & Zhenshan Guo & Yi Liang & Li Chai, 2023. "Measuring Gains and Losses in Virtual Water Trade from Environmental and Economic Perspectives," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 85(1), pages 195-209, May.
    17. Sampson, Gabriel S. & Hendricks, Nathan P. & Taylor, Mykel R., 2019. "Land market valuation of groundwater," Resource and Energy Economics, Elsevier, vol. 58(C).
    18. Ziolkowska, Jad R., 2018. "Profitability of Irrigation and Value of Water in the Southern High Plains," 2018 Annual Meeting, August 5-7, Washington, D.C. 274355, Agricultural and Applied Economics Association.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alcon, Francisco & Zabala, José A. & Martínez-García, Victor & Albaladejo, José A. & López-Becerra, Erasmo I. & de-Miguel, María D. & Martínez-Paz, José M., 2022. "The social wellbeing of irrigation water. A demand-side integrated valuation in a Mediterranean agroecosystem," Agricultural Water Management, Elsevier, vol. 262(C).
    2. Laura Mirra & Bernardo Corrado de Gennaro & Giacomo Giannoccaro, 2021. "Farmer Evaluation of Irrigation Services. Collective or Self-Supplied?," Land, MDPI, vol. 10(4), pages 1-15, April.
    3. Mesa-Jurado, Maria A. & Martin-Ortega, Julia & Ruto, Eric & Berbel, Julio, 2011. "The economic value of guaranteed water supply for irrigation under scarcity conditions," 2011 International Congress, August 30-September 2, 2011, Zurich, Switzerland 114650, European Association of Agricultural Economists.
    4. Joan Pujol & Meri Raggi & Davide Viaggi, 2006. "The potential impact of markets for irrigation water in Italy and Spain: a comparison of two study areas ," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 50(3), pages 361-380, September.
    5. Yiyu Feng & Ming Chang & Erga Luo & Jing Liu, 2023. "Has Property Rights Reform of China’s Farmland Water Facilities Improved Farmers’ Irrigation Efficiency?—Evidence from a Typical Reform Pilot in China’s Yunnan Province," Agriculture, MDPI, vol. 13(2), pages 1-27, January.
    6. Saraiva, Joao Paulo & Pinheiro, Antonio Cipriano, 2007. "A Multi-Criteria Approach for Irrigation Water Management," Agricultural Economics Review, Greek Association of Agricultural Economists, vol. 8(1), pages 1-13, January.
    7. Alves, Gabriel de Sampaio Morais & Fulginiti, Lilyan & Perrin, Richard & Braga, Marcelo José, 2021. "The Use Value of Irrigation Water for Brazilian Agriculture," 2021 Conference, August 17-31, 2021, Virtual 315861, International Association of Agricultural Economists.
    8. Gabriele Dono & Luca Giraldo & Simone Severini, 2012. "The Cost of Irrigation Water Delivery: An Attempt to Reconcile the Concepts of Cost and Efficiency," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(7), pages 1865-1877, May.
    9. Berbel, J., 2015. "Nota sobre valor, coste y renta del agua de riego," Economia Agraria y Recursos Naturales, Spanish Association of Agricultural Economists, vol. 15(01).
    10. Manos, Basil & Begum, Moss. Anjuman Ara & Kamruzzaman, Mohd. & Nakou, Ioanna & Papathanasiou, Jason, 2007. "Fertilizer price policy, the environment and farms behavior," Journal of Policy Modeling, Elsevier, vol. 29(1), pages 87-97.
    11. António C. Pinheiro & João Paulo Saraiva, 2005. "Combining the Water Framework Directive with Agricultural Policy Scenarios: A Multi-Objective Analysis for the Future of Irrigated Agricultural in Portugal," Economics Working Papers 2_2005, University of Évora, Department of Economics (Portugal).
    12. Ziolkowska, Jad R., 2018. "Profitability of Irrigation and Value of Water in the Southern High Plains," 2018 Annual Meeting, August 5-7, Washington, D.C. 274355, Agricultural and Applied Economics Association.
    13. Gomez-Limon, Jose Antonio & Berbel, Julio & Arriaza Balmón, Manuel, 2005. "MCDM Farm System Analysis for Public Management of Irrigated Agriculture," 2005 International Congress, August 23-27, 2005, Copenhagen, Denmark 24676, European Association of Agricultural Economists.
    14. Bartolini, F. & Bazzani, G.M. & Gallerani, V. & Raggi, M. & Viaggi, D., 2007. "The impact of water and agriculture policy scenarios on irrigated farming systems in Italy: An analysis based on farm level multi-attribute linear programming models," Agricultural Systems, Elsevier, vol. 93(1-3), pages 90-114, March.
    15. Watto, Muhammad, 2013. "Measuring Groundwater Irrigation Efficiency in Pakistan: A DEA Approach Using the Sub-vector and Slack-based Models," 2013 Conference (57th), February 5-8, 2013, Sydney, Australia 152204, Australian Agricultural and Resource Economics Society.
    16. Watto, Muhammad Arif & Mugera, Amin William, 2013. "Measuring Groundwater Irrigation Efficiency in Pakistan: A DEA Approach Using the Sub-vector and Slack-based Models," Working Papers 144943, University of Western Australia, School of Agricultural and Resource Economics.
    17. Tesfaye, Abonesh & Wolanios, Nitsuhe & Brouwer, Roy, 2016. "Estimation of the economic value of the ecosystem services provided by the Blue Nile Basin in Ethiopia," Ecosystem Services, Elsevier, vol. 17(C), pages 268-277.
    18. Arriaza Balmón, Manuel & Gomez-Limon, Jose Antonio & Gonzalez, Jose & Ruiz, Pedro, 2006. "Viability of the Raw Cotton Production in Spain After the Decoupling of the Subsidies," 2006 Annual Meeting, August 12-18, 2006, Queensland, Australia 25445, International Association of Agricultural Economists.
    19. Gomez-Limon, Jose A. & Martinez, Yolanda, 2006. "Multi-criteria modelling of irrigation water market at basin level: A Spanish case study," European Journal of Operational Research, Elsevier, vol. 173(1), pages 313-336, August.
    20. Chatzinikolaou, Parthena & Manos, Basil D. & Kiomourtzi, Fedra, 2014. "Assessment of Sustainable Production in rural areas," 2014 Third Congress, June 25-27, 2014, Alghero, Italy 173105, Italian Association of Agricultural and Applied Economics (AIEAA).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:153:y:2015:i:c:p:20-31. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.