IDEAS home Printed from https://ideas.repec.org/a/ags/earnsa/211289.html
   My bibliography  Save this article

Nota sobre valor, coste y renta del agua de riego

Author

Listed:
  • Berbel, J.

Abstract

El propósito de esta nota es rendir homenaje al profesor Ballestero mediante un breve repaso a conceptos económicos estrechamente relacionados con su contribución a la ciencia económica en general y a la economía agraria en particular. En esta nota se repasan conceptos clave en la economía del agua que están en el centro del debate público y político y a los que el profesor Ballestero ha contribuido de manera fundamental.

Suggested Citation

  • Berbel, J., 2015. "Nota sobre valor, coste y renta del agua de riego," Economia Agraria y Recursos Naturales, Spanish Association of Agricultural Economists, vol. 15(01).
  • Handle: RePEc:ags:earnsa:211289
    DOI: 10.22004/ag.econ.211289
    as

    Download full text from publisher

    File URL: https://ageconsearch.umn.edu/record/211289/files/forum3.pdf
    Download Restriction: no

    File URL: https://libkey.io/10.22004/ag.econ.211289?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Enrique Ballestero, 2004. "Inter-Basin Water Transfer Public Agreements: A Decision Approach to Quantity and Price," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 18(1), pages 75-88, February.
    2. Arriaza Balmón, Manuel & Gomez-Limon, Jose A. & Upton, Martin, 1997. "Local water markets for irrigation in southern Spain: A multicriteria approach," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 46(1), pages 1-23.
    3. Pujol, Joan & Raggi, Meri & Viaggi, Davide, 2006. "The potential impact of markets for irrigation water in Italy and Spain: a comparison of two study areas," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 50(3), pages 1-20, September.
    4. Berbel, J. & Mateos, L., 2014. "Does investment in irrigation technology necessarily generate rebound effects? A simulation analysis based on an agro-economic model," Agricultural Systems, Elsevier, vol. 128(C), pages 25-34.
    5. Berbel, Julio & Mesa, Pascual, 2007. "Valoracion del agua de riego por el metodo de precios quasi-hedonicos: aplicacion al Guadalquivir," Economia Agraria y Recursos Naturales, Spanish Association of Agricultural Economists, vol. 7(14), pages 1-18.
    6. Calatrava-Leyva, Javier & Martinez-Granados, David, 2012. "El valor del uso del agua en el regadío de la cuenca del Segura y en las zonas regables del trasvase Tajo-Segura," Economia Agraria y Recursos Naturales, Spanish Association of Agricultural Economists, vol. 12(01), June.
    7. Julio Berbel & M. Mesa-Jurado & Juan Pistón, 2011. "Value of Irrigation Water in Guadalquivir Basin (Spain) by Residual Value Method," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 25(6), pages 1565-1579, April.
    8. Wolfgang Krinner, 2014. "Financial Analysis of the Spanish Water Sector," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(9), pages 2471-2490, July.
    9. Julio Berbel & Carlos Gutiérrez-Martín & Juan Rodríguez-Díaz & Emilio Camacho & Pilar Montesinos, 2015. "Literature Review on Rebound Effect of Water Saving Measures and Analysis of a Spanish Case Study," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(3), pages 663-678, February.
    10. Dan Rigby & Francisco Alcon & Michael Burton, 2010. "Supply uncertainty and the economic value of irrigation water," European Review of Agricultural Economics, Oxford University Press and the European Agricultural and Applied Economics Publications Foundation, vol. 37(1), pages 97-117, March.
    11. Enrique Ballestero, 2007. "Water Public Agencies Agreeing to A Covenant for Water Transfers: How to Arbitrate Price–Quantity Clauses," International Series in Operations Research & Management Science, in: Andres Weintraub & Carlos Romero & Trond Bjørndal & Rafael Epstein & Jaime Miranda (ed.), Handbook Of Operations Research In Natural Resources, chapter 0, pages 115-127, Springer.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Forough Jafary & Chris Bradley, 2018. "Groundwater Irrigation Management and the Existing Challenges from the Farmers’ Perspective in Central Iran," Land, MDPI, vol. 7(1), pages 1-21, January.
    2. Qian Chen & Jaume Freire González & Donglan Zha, 2023. "The Gap between Expectations and Reality: Assessing the Water Rebound Effect in Chinese Agriculture," Working Papers 1415, Barcelona School of Economics.
    3. Mesa-Jurado, Maria A. & Martin-Ortega, Julia & Ruto, Eric & Berbel, Julio, 2011. "The economic value of guaranteed water supply for irrigation under scarcity conditions," 2011 International Congress, August 30-September 2, 2011, Zurich, Switzerland 114650, European Association of Agricultural Economists.
    4. Villamayor-Tomas, Sergio, 2014. "Cooperation in common property regimes under extreme drought conditions: Empirical evidence from the use of pooled transferable quotas in Spanish irrigation systems," Ecological Economics, Elsevier, vol. 107(C), pages 482-493.
    5. Guerrero-Baena, M. Dolores & Villanueva, Anastasio J. & Gómez-Limón, José A. & Glenk, Klaus, 2019. "Willingness to pay for improved irrigation water supply reliability: An approach based on probability density functions," Agricultural Water Management, Elsevier, vol. 217(C), pages 11-22.
    6. Fei, Rilong & Xie, Mengyuan & Wei, Xin & Ma, Ding, 2021. "Has the water rights system reform restrained the water rebound effect? Empirical analysis from China's agricultural sector," Agricultural Water Management, Elsevier, vol. 246(C).
    7. Borrego-Marín, María M. & Berbel, J., 2019. "Cost-benefit analysis of irrigation modernization in Guadalquivir River Basin," Agricultural Water Management, Elsevier, vol. 212(C), pages 416-423.
    8. Xie, Yang & Zilberman, David, 2015. "Water-Storage Capacities versus Water-Use Efficiency: Substitutes or Complements?," 2015 Conference, August 9-14, 2015, Milan, Italy 211894, International Association of Agricultural Economists.
    9. Dolores Rey & Alberto Garrido & Javier Calatrava, 2016. "Comparison of Different Water Supply Risk Management Tools for Irrigators: Option Contracts and Insurance," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 65(2), pages 415-439, October.
    10. Aijun Guo & Rong Zhang & Xiaoyu Song & Fanglei Zhong & Daiwei Jiang & Yuan Song, 2021. "Predicting the Water Rebound Effect in China under the Shared Socioeconomic Pathways," IJERPH, MDPI, vol. 18(3), pages 1-24, February.
    11. Ziolkowska, Jadwiga R., 2015. "Shadow price of water for irrigation—A case of the High Plains," Agricultural Water Management, Elsevier, vol. 153(C), pages 20-31.
    12. Alves, Gabriel de Sampaio Morais & Fulginiti, Lilyan & Perrin, Richard & Braga, Marcelo José, 2021. "The Use Value of Irrigation Water for Brazilian Agriculture," 2021 Conference, August 17-31, 2021, Virtual 315861, International Association of Agricultural Economists.
    13. Alcon, Francisco & Zabala, José A. & Martínez-García, Victor & Albaladejo, José A. & López-Becerra, Erasmo I. & de-Miguel, María D. & Martínez-Paz, José M., 2022. "The social wellbeing of irrigation water. A demand-side integrated valuation in a Mediterranean agroecosystem," Agricultural Water Management, Elsevier, vol. 262(C).
    14. David Font Vivanco & Jaume Freire‐González & Ray Galvin & Tilman Santarius & Hans Jakob Walnum & Tamar Makov & Serenella Sala, 2022. "Rebound effect and sustainability science: A review," Journal of Industrial Ecology, Yale University, vol. 26(4), pages 1543-1563, August.
    15. Alfonso Expósito & Julio Berbel, 2017. "Why Is Water Pricing Ineffective for Deficit Irrigation Schemes? A Case Study in Southern Spain," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(3), pages 1047-1059, February.
    16. Simons, G.W.H. & Bastiaanssen, W.G.M. & Cheema, M.J.M. & Ahmad, B. & Immerzeel, W.W., 2020. "A novel method to quantify consumed fractions and non-consumptive use of irrigation water: Application to the Indus Basin Irrigation System of Pakistan," Agricultural Water Management, Elsevier, vol. 236(C).
    17. Xu, Hang & Song, Jianfeng, 2022. "Drivers of the irrigation water rebound effect: A case study of Hetao irrigation district in Yellow River basin, China," Agricultural Water Management, Elsevier, vol. 266(C).
    18. Zhang, Ling & Ma, Qimin & Zhao, Yanbo & Wu, Xiaobo & Yu, Wenjun, 2019. "Determining the influence of irrigation efficiency improvement on water use and consumption by conceptually considering hydrological pathways," Agricultural Water Management, Elsevier, vol. 213(C), pages 674-681.
    19. María M. Borrego-Marín & Carlos Gutiérrez-Martín & Julio Berbel, 2016. "Estimation of Cost Recovery Ratio for Water Services Based on the System of Environmental-Economic Accounting for Water," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(2), pages 767-783, January.
    20. Berbel, Julio & Gutierrez-Marín, Carlos & Expósito, Alfonso, 2018. "Microeconomic analysis of irrigation efficiency improvement in water use and water consumption," Agricultural Water Management, Elsevier, vol. 203(C), pages 423-429.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ags:earnsa:211289. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: AgEcon Search (email available below). General contact details of provider: https://edirc.repec.org/data/aeeaaea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.