IDEAS home Printed from https://ideas.repec.org/a/eee/agisys/v99y2009i2-3p126-140.html
   My bibliography  Save this article

Generating plausible crop distribution maps for Sub-Saharan Africa using a spatially disaggregated data fusion and optimization approach

Author

Listed:
  • You, Liangzhi
  • Wood, Stanley
  • Wood-Sichra, Ulrike

Abstract

Large gaps exist in our knowledge of the current geographic distribution and spatial patterns of performance of crops, and these gaps are unlikely to be filled. In addition, even the spatial scale of many sub-national statistical reporting units remains too coarse to capture patterns of spatial heterogeneity in crop production and performance that are likely important from a policy and investment planning perspective. To fill these spatial data gaps we have developed and applied a meso-scale model for the spatial disaggregation of crop production. Using a cross-entropy approach, our model makes plausible pixel-scale assessments of the spatial distribution of crop production within geopolitical units (e.g. countries or sub-national provinces and districts). The pixel-scale allocations are performed through the compilation and judicious fusion of relevant spatially-explicit data, including: production statistics, land use data, satellite imagery, biophysical crop "suitability" assessments, population density, and distance to urban centers, as wells as any prior knowledge about the spatial distribution of individual crops. The development, application and validation of a prior version of the model in Brazil strongly suggested that our spatial allocation approach shows considerable promise. This paper describes efforts to generate crop distribution maps for Sub-Saharan Africa for the year 2000 using this approach. Apart from the empirical challenge of applying the approach across many countries, the application includes three significant model improvements: (1) the ability to cope with production data sources that provided different degrees of spatial disaggregation for different crops within a single country; (2) the inclusion of a digital map of irrigation intensity as a new input layer; and (3) increased disaggregation of rainfed production systems. Applying the modified spatial allocation model we generated 5Â min (approximately 10Â km) resolution grid maps for the following 20 major crops across Sub-Saharan Africa: barley, dry beans, cassava, cocoa, coffee, cotton, cow peas, groundnuts, maize, millet, oil palm, plantain, potato, rice, sorghum, soybeans, sugar cane, sweet potato, wheat, and yam. The approach provides plausible results but also highlights the need for much more reliable input data for the region, especially with regard to sub-national production statistics and satellite-based estimates of cropland extent and intensity.

Suggested Citation

  • You, Liangzhi & Wood, Stanley & Wood-Sichra, Ulrike, 2009. "Generating plausible crop distribution maps for Sub-Saharan Africa using a spatially disaggregated data fusion and optimization approach," Agricultural Systems, Elsevier, vol. 99(2-3), pages 126-140, February.
  • Handle: RePEc:eee:agisys:v:99:y:2009:i:2-3:p:126-140
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0308-521X(08)00129-7
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Xiaobo Zhang & Shenggen Fan, 2001. "Estimating Crop-Specific Production Technologies in Chinese Agriculture: A Generalized Maximum Entropy Approach," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 83(2), pages 378-388.
    2. Renkow, Mitch & Hallstrom, Daniel G. & Karanja, Daniel D., 2004. "Rural infrastructure, transactions costs and market participation in Kenya," Journal of Development Economics, Elsevier, vol. 73(1), pages 349-367, February.
    3. Lence, Sergio H & Miller, Douglas J, 1998. "Estimation of Multi-output Production Functions with Incomplete Data: A Generalised Maximum Entropy Approach," European Review of Agricultural Economics, Oxford University Press and the European Agricultural and Applied Economics Publications Foundation, vol. 25(2), pages 188-209.
    4. You, Liangzhi & Wood, Stanley, 2006. "An entropy approach to spatial disaggregation of agricultural production," Agricultural Systems, Elsevier, vol. 90(1-3), pages 329-347, October.
    5. Staal, S. J. & Baltenweck, I. & Waithaka, M. M. & deWolff, T. & Njoroge, L., 2002. "Location and uptake: integrated household and GIS analysis of technology adoption and land use, with application to smallholder dairy farms in Kenya," Agricultural Economics, Blackwell, vol. 27(3), pages 295-315, November.
    6. Bera, Anil K. & Bilias, Yannis, 2002. "The MM, ME, ML, EL, EF and GMM approaches to estimation: a synthesis," Journal of Econometrics, Elsevier, vol. 107(1-2), pages 51-86, March.
    7. Shen, Edward Z. & Perloff, Jeffrey M., 2001. "Maximum entropy and Bayesian approaches to the ratio problem," Journal of Econometrics, Elsevier, vol. 104(2), pages 289-313, September.
    8. Golan, Amos & Judge, George G. & Miller, Douglas, 1996. "Maximum Entropy Econometrics," Staff General Research Papers Archive 1488, Iowa State University, Department of Economics.
    9. Jayne, T S, 1994. "Do High Food Marketing Costs Constrain Cash Crop Production? Evidence from Zimbabwe," Economic Development and Cultural Change, University of Chicago Press, vol. 42(2), pages 387-402, January.
    10. Quirino Paris & Richard E. Howitt, 1998. "An Analysis of Ill-Posed Production Problems Using Maximum Entropy," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 80(1), pages 124-138.
    11. Kherallah, Mylène & Delgado, Christopher L. & Gabre-Madhin, Eleni Z. & Minot, Nicholas. & Johnson, Michael., 2000. "The road half traveled," Food policy reports 10, International Food Policy Research Institute (IFPRI).
      • Kherallah, Mylène & Delgado, Christopher L. & Gabre-Madhin, Eleni Z. & Minot, Nicholas & Johnson, Michael, 2000. "The road half traveled," Issue briefs 2, International Food Policy Research Institute (IFPRI).
    12. Steven Were Omamo, 1998. "Transport Costs and Smallholder Cropping Choices: An Application to Siaya District, Kenya," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 80(1), pages 116-123.
    13. Paris, Quirino & Caputo, Michael R., 2001. "Sensitivity Of The Gme Estimates To Support Bounds," Working Papers 11966, University of California, Davis, Department of Agricultural and Resource Economics.
    14. Wood, Stanley & Sebastian, Kate & Nachtergaele, Freddy & Nielsen, Daniel & Dai, Aiguo, 1999. "Spatial aspects of the design and targeting of agricultural development strategies:," EPTD discussion papers 44, International Food Policy Research Institute (IFPRI).
    15. Obare, G. A. & Omamo, S. W. & Williams, J. C., 2003. "Smallholder production structure and rural roads in Africa: the case of Nakuru District, Kenya," Agricultural Economics, Blackwell, vol. 28(3), pages 245-254, May.
    16. Anselin, Luc, 2002. "Under the hood : Issues in the specification and interpretation of spatial regression models," Agricultural Economics, Blackwell, vol. 27(3), pages 247-267, November.
    17. Bell, Kathleen P. & Irwin, Elena G., 2002. "Spatially explicit micro-level modelling of land use change at the rural-urban interface," Agricultural Economics, Blackwell, vol. 27(3), pages 217-232, November.
    18. Nelson, Gerald C., 2002. "Introduction to the special issue on spatial analysis for agricultural economists," Agricultural Economics, Blackwell, vol. 27(3), pages 197-200, November.
    19. Paul V. Preckel, 2001. "Least Squares and Entropy: A Penalty Function Perspective," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 83(2), pages 366-377.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. You, Liangzhi & Wood, Stanley & Wood-Sichra, Ulrike, 2007. "Generating plausible crop distribution and performance maps for Sub-Saharan Africa using a spatially disaggregated data fusion and optimization approach:," IFPRI discussion papers 725, International Food Policy Research Institute (IFPRI).
    2. You, Liangzhi & Wood, Stanley & Wood-Sichra, Ulrike, 2004. "Generating Plausible Crop Distribution Maps For Sub-Sahara Africa Using Spatial Allocation Model," 2004 Annual meeting, August 1-4, Denver, CO 19965, American Agricultural Economics Association (New Name 2008: Agricultural and Applied Economics Association).
    3. You, Liangzhi & Wood, Stanley & Wood-Sichra, Ulrike & Wu, Wenbin, 2014. "Generating global crop distribution maps: From census to grid," Agricultural Systems, Elsevier, vol. 127(C), pages 53-60.
    4. Louhichi, Kamel & Jacquet, Florence & Butault, Jean Pierre, 2012. "Estimating input allocation from heterogeneous data sources: A comparison of alternative estimation approaches," Agricultural Economics Review, Greek Association of Agricultural Economists, vol. 13(2), pages 1-20.
    5. Msangi, Siwa & Howitt, Richard E., 2006. "Estimating Disaggregate Production Functions: An Application to Northern Mexico," 2006 Annual meeting, July 23-26, Long Beach, CA 21080, American Agricultural Economics Association (New Name 2008: Agricultural and Applied Economics Association).
    6. Kathleen P. Bell & Timothy J. Dalton, 2007. "Spatial Economic Analysis in Data‐Rich Environments," Journal of Agricultural Economics, Wiley Blackwell, vol. 58(3), pages 487-501, September.
    7. Rui Fragoso & Maria Leonor da Silva Carvalho, 2013. "Estimation of cost allocation coefficients at the farm level using an entropy approach," Journal of Applied Statistics, Taylor & Francis Journals, vol. 40(9), pages 1893-1906, September.
    8. Heckelei, Thomas & Mittelhammer, Ronald C. & Jansson, Torbjorn, 2008. "A Bayesian Alternative To Generalized Cross Entropy Solutions For Underdetermined Econometric Models," Discussion Papers 56973, University of Bonn, Institute for Food and Resource Economics.
    9. Thomas Heckelei & Wolfgang Britz, 2000. "Positive Mathematical Programming with Multiple Data Points: A Cross-Sectional Estimation Procedure," Cahiers d'Economie et Sociologie Rurales, INRA Department of Economics, vol. 57, pages 27-50.
    10. Anderson, Weston & You, Liangzhi & Wood, Stanley & Wood-Sichra, Ulrike & Wu, Wenbin, 2014. "A comparative analysis of global cropping systems models and maps:," IFPRI discussion papers 1327, International Food Policy Research Institute (IFPRI).
    11. Heckelei, T. & Wolff, H., 2001. "Ansätze zur (Auf-)Lösung eines alten Methodenstreits: Ökonometrische Spezifikation von Programmierungsmodellen zur Agrarangebotsanalyse," Proceedings “Schriften der Gesellschaft für Wirtschafts- und Sozialwissenschaften des Landbaues e.V.”, German Association of Agricultural Economists (GEWISOLA), vol. 37.
    12. Howitt, Richard E. & Msangi, Siwa, 2002. "Reconstructing Disaggregate Production Functions," 2002 Annual meeting, July 28-31, Long Beach, CA 19585, American Agricultural Economics Association (New Name 2008: Agricultural and Applied Economics Association).
    13. Wouter Zant, 2012. "How does Market Access affect Smallholder Behavior? The Case of Tobacco Marketing in Malawi," Tinbergen Institute Discussion Papers 12-088/V, Tinbergen Institute, revised 25 Aug 2014.
    14. Ludo Peeters, 2011. "Controlling For Heterogeneity And Asymmetry In Cross-Section Gravity Models Of Aggregate Migration: Evidence From Mexico," ERSA conference papers ersa10p329, European Regional Science Association.
    15. Petsakos, Athanasios & Rozakis, Stelios, 2011. "Integrating risk and uncertainty in PMP models," 2011 International Congress, August 30-September 2, 2011, Zurich, Switzerland 114762, European Association of Agricultural Economists.
    16. Wouter Zant, 2016. "How does Market Access for Smallholders affect Export Supply? The Case of Tobacco Marketing in Malawi," Tinbergen Institute Discussion Papers 16-054/V, Tinbergen Institute, revised 08 Aug 2018.
    17. Raja Chakir, 2009. "Spatial Downscaling of Agricultural Land-Use Data: An Econometric Approach Using Cross Entropy," Land Economics, University of Wisconsin Press, vol. 85(2), pages 238-251.
    18. Paul Voss & David Long & Roger Hammer & Samantha Friedman, 2006. "County child poverty rates in the US: a spatial regression approach," Population Research and Policy Review, Springer;Southern Demographic Association (SDA), vol. 25(4), pages 369-391, August.
    19. Arfini, Filippo & Donati, Michele & Marongiu, Sonia & Cesaro, Luca, 2012. "Farm production costs estimation trough PMP Models: an application in three Italian Regions," 2012 First Congress, June 4-5, 2012, Trento, Italy 124117, Italian Association of Agricultural and Applied Economics (AIEAA).
    20. Esteban Fernández-Vázquez & Matías Mayor-Fernández & Jorge Rodríguez-Vález, 2009. "Estimating Spatial Autoregressive Models by GME-GCE Techniques," International Regional Science Review, , vol. 32(2), pages 148-172, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agisys:v:99:y:2009:i:2-3:p:126-140. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agsy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.