IDEAS home Printed from https://ideas.repec.org/a/eee/agisys/v142y2016icp84-98.html
   My bibliography  Save this article

Evaluation of the economic feasibility of water harvesting for irrigation in a large semi-arid tropical catchment in northern Australia

Author

Listed:
  • Petheram, C.
  • McKellar, L.
  • Holz, L.
  • Poulton, P.
  • Podger, S.
  • Yeates, S.

Abstract

There is interest by governments and private organisations in exploring alternative models of irrigation in parts of northern Australia where there has been little irrigation development to date. One alternative is ‘water harvesting’, which is defined here as the practice of pumping or diverting water during streamflow events and either applying directly to a crop or (more commonly) holding water in off-stream storage on a property for later use. This study presents a detailed farm-scale bio-economic analysis of water harvesting using river system modelling to represent the interactions between farm-scale returns, reliability of extraction and scale of development. In doing so the farm-scale viability of irrigation within a whole of catchment is assessed, and uses the Flinders catchment, a large, semi-arid tropical catchment in northern Australia as a case study. Extraction reliability varied spatially across the catchment and decreased with increasing total catchment extraction. The farm-scale profitability of water harvesting enterprises was found to be particularly sensitive to fluctuations in price, reliability of water extraction, discount rate, cost of storage and timing of crop-failure years. For crops requiring off-site processing, the existence of local processing facilities was a major factor. This study also highlighted that for irrigation developments based on water harvesting there is potential for serious mismatches between the timing of streamflow and time at which planting must occur.

Suggested Citation

  • Petheram, C. & McKellar, L. & Holz, L. & Poulton, P. & Podger, S. & Yeates, S., 2016. "Evaluation of the economic feasibility of water harvesting for irrigation in a large semi-arid tropical catchment in northern Australia," Agricultural Systems, Elsevier, vol. 142(C), pages 84-98.
  • Handle: RePEc:eee:agisys:v:142:y:2016:i:c:p:84-98
    DOI: 10.1016/j.agsy.2015.11.007
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0308521X15300470
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agsy.2015.11.007?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Connor, Jeffery D. & Schwabe, Kurt & King, Darran & Knapp, Keith, 2012. "Irrigated agriculture and climate change: The influence of water supply variability and salinity on adaptation," Ecological Economics, Elsevier, vol. 77(C), pages 149-157.
    2. Turral, Hugh & Svendsen, Mark & Faures, Jean Marc, 2010. "Investing in irrigation: Reviewing the past and looking to the future," Agricultural Water Management, Elsevier, vol. 97(4), pages 551-560, April.
    3. Hunt, Warren & Birch, Colin & Vanclay, Frank & Coutts, Jeff, 2014. "Recommendations arising from an analysis of changes to the Australian agricultural research, development and extension system," Food Policy, Elsevier, vol. 44(C), pages 129-141.
    4. Shah, Tushaar & Molden, David J. & Sakthivadivel, Ramasamy & Seckler, David, 2000. "The global groundwater situation: overview of opportunities and challenges," IWMI Books, International Water Management Institute, number 113506.
    5. Alistair Watson & Eve Merton, 2013. "Food Security in Australia: Some Misplaced Enthusiasms?," Economic Papers, The Economic Society of Australia, vol. 32(3), pages 317-327, September.
    6. Shah, T. & Molden, D. & Sakthivadivel, R. & Seckler, D., 2000. "The global groundwater situation: overview of opportunities and challenges," IWMI Books, Reports H025885, International Water Management Institute.
    7. de Fraiture, Charlotte & Giordano, Meredith, 2014. "Small private irrigation: A thriving but overlooked sector," Agricultural Water Management, Elsevier, vol. 131(C), pages 167-174.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shalu Agrawal & Abhishek Jain, 2019. "Sustainable deployment of solar irrigation pumps: Key determinants and strategies," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 8(2), March.
    2. Yonghong Hao & Bibo Cao & Xiang Chen & Jian Yin & Ronglin Sun & Tian-Chyi Yeh, 2013. "A Piecewise Grey System Model for Study the Effects of Anthropogenic Activities on Karst Hydrological Processes," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(5), pages 1207-1220, March.
    3. World Bank, 2010. "Deep Wells and Prudence : Towards Pragmatic Action for Addressing Groundwater Overexploitation in India," World Bank Publications - Reports 2835, The World Bank Group.
    4. Ereney Hadjigeorgalis, 2009. "A Place for Water Markets: Performance and Challenges," Review of Agricultural Economics, Agricultural and Applied Economics Association, vol. 31(1), pages 50-67.
    5. Löfgren, Hans & Richards, Alan, 2003. "Food security, poverty, and economic policy in the Middle East and North Africa," TMD discussion papers 111, International Food Policy Research Institute (IFPRI).
    6. Neumann, Kathleen & Stehfest, Elke & Verburg, Peter H. & Siebert, Stefan & Müller, Christoph & Veldkamp, Tom, 2011. "Exploring global irrigation patterns: A multilevel modelling approach," Agricultural Systems, Elsevier, vol. 104(9), pages 703-713.
    7. Son H. Kim & Mohamad Hejazi & Lu Liu & Katherine Calvin & Leon Clarke & Jae Edmonds & Page Kyle & Pralit Patel & Marshall Wise & Evan Davies, 2016. "Balancing global water availability and use at basin scale in an integrated assessment model," Climatic Change, Springer, vol. 136(2), pages 217-231, May.
    8. Gorton, Matthew & Sauer, Johannes & Peshevski, Mile & Bosev, Dane & Shekerinov, Darko & Quarrie, Steve, 2009. "Water Communities in the Republic of Macedonia: An Empirical Analysis of Membership Satisfaction and Payment Behavior," World Development, Elsevier, vol. 37(12), pages 1951-1963, December.
    9. Guangyao Chi & Xiaosi Su & Hang Lyu & Guigui Xu & Yiwu Zhang & Ningfei Li, 2021. "Simulating the Shallow Groundwater Level Response to Artificial Recharge and Storage in the Plain Area of the Daqing River Basin, China," Sustainability, MDPI, vol. 13(10), pages 1-17, May.
    10. Molle, Francois & Berkoff, Jeremy (ed.), 2007. "Irrigation water pricing: the gap between theory and practice," IWMI Books, International Water Management Institute, number 137957.
    11. Richards, Alan, 2002. "Policy Paper 54: Coping with Water Scarcity: The Governance Challenge," Institute on Global Conflict and Cooperation, Working Paper Series qt8941v354, Institute on Global Conflict and Cooperation, University of California.
    12. Susan Randolph & Patrick Guyer, 2011. "Tracking the Historical Evolution of States' Compliance with their Economics and Social Rights Obligations of Result: Insights from the Historical SERF Index," Economic Rights Working Papers 18, University of Connecticut, Human Rights Institute.
    13. Muhammad Arif Watto & Amin W. Mugera, 2014. "Measuring Production and Irrigation Efficiencies of Rice Farms: Evidence from the Punjab Province, Pakistan," Asian Economic Journal, East Asian Economic Association, vol. 28(3), pages 301-322, September.
    14. Strand, Jon, 2012. "Allocative inefficiencies resulting from subsidies to agricultural electricity use : an illustrative model," Policy Research Working Paper Series 5955, The World Bank.
    15. Bassi, Nitin & Vijayshankar, P. S. & Kumar, M. Dinesh, 2008. "Wells and ill-fare: impacts of well failures on cultivators in hard rock areas of Madhya Pradesh," IWMI Conference Proceedings 245346, International Water Management Institute.
    16. Wassmann, R. & Pathak, H., 2007. "Introducing greenhouse gas mitigation as a development objective in rice-based agriculture: II. Cost-benefit assessment for different technologies, regions and scales," Agricultural Systems, Elsevier, vol. 94(3), pages 826-840, June.
    17. Varela-Ortega, C., 2007. "Policy-driven determinants of irrigation development and environmental sustainability: a case study in Spain," IWMI Books, Reports H040612, International Water Management Institute.
    18. Watto, Muhammad, 2013. "Measuring Groundwater Irrigation Efficiency in Pakistan: A DEA Approach Using the Sub-vector and Slack-based Models," 2013 Conference (57th), February 5-8, 2013, Sydney, Australia 152204, Australian Agricultural and Resource Economics Society.
    19. Watto, Muhammad Arif & Mugera, Amin William, 2013. "Measuring Groundwater Irrigation Efficiency in Pakistan: A DEA Approach Using the Sub-vector and Slack-based Models," Working Papers 144943, University of Western Australia, School of Agricultural and Resource Economics.
    20. Urvashi Sharma & Adeeba Khan & Venkatesh Dutta, 2021. "Long-term sustainability of groundwater resources in the central Ganga Alluvial Plain, India: Study from Gomti River Basin," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(11), pages 16015-16037, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agisys:v:142:y:2016:i:c:p:84-98. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agsy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.