IDEAS home Printed from https://ideas.repec.org/a/bla/wireae/v10y2021i4ne395.html
   My bibliography  Save this article

Review of life cycle greenhouse gases, air pollutant emissions and costs of road medium and heavy‐duty trucks

Author

Listed:
  • Pedro G. Machado
  • Ana C. R. Teixeira
  • Flavia M. A. Collaço
  • Dominique Mouette

Abstract

The desired energy transition to guarantee net‐zero greenhouse gases (GHGs) emissions needs to take place in every sector of the global economy. The transport sector is responsible for a large share of energy consumption and GHGs emissions while contributing to the increase in air pollution. Although new technologies are available, the use of diesel in road transport is still predominant. These new technologies, nonetheless, still present inconsistencies in their environment, economic performances and do not necessarily provide improvements when considering the entire fuel life cycle used in medium and heavy‐duty trucks. This systematic review addresses the uncertainties in life cycle studies regarding the road transport sector fuel consumption, GHGs, and air pollutant emissions economic analyses. Results show that there are higher chances of reducing GHGs emissions through biogas or fuel‐cell hydrogen trucks, while PM2.5 and NOx emissions have higher chances of being reduced with fuel‐cell hydrogen or natural gas trucks. There is, however, a reduced interest by the scientific community in the transport literature in dealing with air pollutants, and the focus is mainly on GHGs emissions. When it comes to economic viability, natural gas and hybrid trucks are the best substitutes. This article is categorized under: Energy and Transport > Economics and Policy Energy and Transport > Climate and Environment Energy and Climate > Climate and Environment

Suggested Citation

  • Pedro G. Machado & Ana C. R. Teixeira & Flavia M. A. Collaço & Dominique Mouette, 2021. "Review of life cycle greenhouse gases, air pollutant emissions and costs of road medium and heavy‐duty trucks," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 10(4), July.
  • Handle: RePEc:bla:wireae:v:10:y:2021:i:4:n:e395
    DOI: 10.1002/wene.395
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/wene.395
    Download Restriction: no

    File URL: https://libkey.io/10.1002/wene.395?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Jenn, Alan & Azevedo, Inês L. & Ferreira, Pedro, 2013. "The impact of federal incentives on the adoption of hybrid electric vehicles in the United States," Energy Economics, Elsevier, vol. 40(C), pages 936-942.
    2. Sharma, Ashish & Strezov, Vladimir, 2017. "Life cycle environmental and economic impact assessment of alternative transport fuels and power-train technologies," Energy, Elsevier, vol. 133(C), pages 1132-1141.
    3. Feiqi Liu & Fuquan Zhao & Zongwei Liu & Han Hao, 2018. "China’s Electric Vehicle Deployment: Energy and Greenhouse Gas Emission Impacts," Energies, MDPI, vol. 11(12), pages 1-19, November.
    4. Jesko Schulte & Henrik Ny, 2018. "Electric Road Systems: Strategic Stepping Stone on the Way towards Sustainable Freight Transport?," Sustainability, MDPI, vol. 10(4), pages 1-16, April.
    5. Grigoratos, Theodoros & Fontaras, Georgios & Martini, Giorgio & Peletto, Cesare, 2016. "A study of regulated and green house gas emissions from a prototype heavy-duty compressed natural gas engine under transient and real life conditions," Energy, Elsevier, vol. 103(C), pages 340-355.
    6. Lucas Reijnders, 2013. "Lipid‐based liquid biofuels from autotrophic microalgae: energetic and environmental performance," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 2(1), pages 73-85, January.
    7. Ivan Smajla & Daria Karasalihović Sedlar & Branko Drljača & Lucija Jukić, 2019. "Fuel Switch to LNG in Heavy Truck Traffic," Energies, MDPI, vol. 12(3), pages 1-19, February.
    8. Sathiyamoorthi, R. & Sankaranarayanan, G. & Adhith kumaar, S.B. & Chiranjeevi, T. & Dilip Kumar, D., 2019. "Experimental investigation on performance, combustion and emission characteristics of a single cylinder diesel engine fuelled by biodiesel derived from Cymbopogon Martinii," Renewable Energy, Elsevier, vol. 132(C), pages 394-415.
    9. Hao Li & Yuhuan Zhao & Jiang Lin, 2020. "A review of the energy–carbon–water nexus: Concepts, research focuses, mechanisms, and methodologies," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 9(1), January.
    10. Imbi Traat, 2009. "Simulation and the Monte Carlo Method, 2nd Edition by Reuven Y. Rubinstein, Dirk P. Kroese," International Statistical Review, International Statistical Institute, vol. 77(1), pages 153-154, April.
    11. Amela Ajanovic, 2015. "The future of electric vehicles: prospects and impediments," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 4(6), pages 521-536, November.
    12. Shafiei, Ehsan & Davidsdottir, Brynhildur & Leaver, Jonathan & Stefansson, Hlynur & Asgeirsson, Eyjolfur Ingi, 2015. "Comparative analysis of hydrogen, biofuels and electricity transitional pathways to sustainable transport in a renewable-based energy system," Energy, Elsevier, vol. 83(C), pages 614-627.
    13. Kast, James & Morrison, Geoffrey & Gangloff, John J. & Vijayagopal, Ram & Marcinkoski, Jason, 2018. "Designing hydrogen fuel cell electric trucks in a diverse medium and heavy duty market," Research in Transportation Economics, Elsevier, vol. 70(C), pages 139-147.
    14. Askin, Amanda C. & Barter, Garrett E. & West, Todd H. & Manley, Dawn K., 2015. "The heavy-duty vehicle future in the United States: A parametric analysis of technology and policy tradeoffs," Energy Policy, Elsevier, vol. 81(C), pages 1-13.
    15. Cai, Hao & Burnham, Andrew & Chen, Rui & Wang, Michael, 2017. "Wells to wheels: Environmental implications of natural gas as a transportation fuel," Energy Policy, Elsevier, vol. 109(C), pages 565-578.
    16. Song, Hongqing & Ou, Xunmin & Yuan, Jiehui & Yu, Mingxu & Wang, Cheng, 2017. "Energy consumption and greenhouse gas emissions of diesel/LNG heavy-duty vehicle fleets in China based on a bottom-up model analysis," Energy, Elsevier, vol. 140(P1), pages 966-978.
    17. Miqdam T. Chaichan & Hussien A. Kazem & Talib A. Abed, 2018. "Traffic and outdoor air pollution levels near highways in Baghdad, Iraq," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 20(2), pages 589-603, April.
    18. Moraes, Bruna S. & Junqueira, Tassia L. & Pavanello, Lucas G. & Cavalett, Otávio & Mantelatto, Paulo E. & Bonomi, Antonio & Zaiat, Marcelo, 2014. "Anaerobic digestion of vinasse from sugarcane biorefineries in Brazil from energy, environmental, and economic perspectives: Profit or expense?," Applied Energy, Elsevier, vol. 113(C), pages 825-835.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Stef, Nicolae & Başağaoğlu, Hakan & Chakraborty, Debaditya & Ben Jabeur, Sami, 2023. "Does institutional quality affect CO2 emissions? Evidence from explainable artificial intelligence models," Energy Economics, Elsevier, vol. 124(C).
    2. Ren, Lei & Zhou, Sheng & Peng, Tianduo & Ou, Xunmin, 2022. "Greenhouse gas life cycle analysis of China's fuel cell medium- and heavy-duty trucks under segmented usage scenarios and vehicle types," Energy, Elsevier, vol. 249(C).
    3. Stettler, Marc E.J. & Woo, Mino & Ainalis, Daniel & Achurra-Gonzalez, Pablo & Speirs, Jamie & Cooper, Jasmin & Lim, Dong-Ha & Brandon, Nigel & Hawkes, Adam, 2023. "Review of Well-to-Wheel lifecycle emissions of liquefied natural gas heavy goods vehicles," Applied Energy, Elsevier, vol. 333(C).
    4. Zhu, Min & Dong, Peiwu & Ju, Yanbing & Li, Jiajun & Ran, Lun, 2023. "Effects of government subsidies on heavy-duty hydrogen fuel cell truck penetration: A scenario-based system dynamics model," Energy Policy, Elsevier, vol. 183(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Flávia Mendes de Almeida Collaço & Ana Carolina Rodrigues Teixeira & Pedro Gerber Machado & Raquel Rocha Borges & Thiago Luis Felipe Brito & Dominique Mouette, 2022. "Road Freight Transport Literature and the Achievements of the Sustainable Development Goals—A Systematic Review," Sustainability, MDPI, vol. 14(6), pages 1-18, March.
    2. Pedro Gerber Machado & Ana Carolina Rodrigues Teixeira & Flavia Mendes de Almeida Collaço & Adam Hawkes & Dominique Mouette, 2020. "Assessment of Greenhouse Gases and Pollutant Emissions in the Road Freight Transport Sector: A Case Study for São Paulo State, Brazil," Energies, MDPI, vol. 13(20), pages 1-26, October.
    3. Sun, Shouheng & Ertz, Myriam, 2022. "Life cycle assessment and risk assessment of liquefied natural gas vehicles promotion," Renewable and Sustainable Energy Reviews, Elsevier, vol. 153(C).
    4. Yuan, Zhiyi & Ou, Xunmin & Peng, Tianduo & Yan, Xiaoyu, 2019. "Life cycle greenhouse gas emissions of multi-pathways natural gas vehicles in china considering methane leakage," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    5. Ren, Lei & Zhou, Sheng & Peng, Tianduo & Ou, Xunmin, 2022. "Greenhouse gas life cycle analysis of China's fuel cell medium- and heavy-duty trucks under segmented usage scenarios and vehicle types," Energy, Elsevier, vol. 249(C).
    6. Juan C. González Palencia & Van Tuan Nguyen & Mikiya Araki & Seiichi Shiga, 2020. "The Role of Powertrain Electrification in Achieving Deep Decarbonization in Road Freight Transport," Energies, MDPI, vol. 13(10), pages 1-24, May.
    7. Carlo Cunanan & Manh-Kien Tran & Youngwoo Lee & Shinghei Kwok & Vincent Leung & Michael Fowler, 2021. "A Review of Heavy-Duty Vehicle Powertrain Technologies: Diesel Engine Vehicles, Battery Electric Vehicles, and Hydrogen Fuel Cell Electric Vehicles," Clean Technol., MDPI, vol. 3(2), pages 1-16, June.
    8. Teixeira, Ana Carolina Rodrigues & Machado, Pedro Gerber & Borges, Raquel Rocha & Mouette, Dominique, 2020. "Public policies to implement alternative fuels in the road transport sector," Transport Policy, Elsevier, vol. 99(C), pages 345-361.
    9. Ravigné, E. & Da Costa, P., 2021. "Economic and environmental performances of natural gas for heavy trucks: A case study on the French automotive industry supply chain," Energy Policy, Elsevier, vol. 149(C).
    10. Qian Zhao & Wenke Huang & Mingwei Hu & Xiaoxiao Xu & Wenlin Wu, 2021. "Characterizing the Economic and Environmental Benefits of LNG Heavy-Duty Trucks: A Case Study in Shenzhen, China," Sustainability, MDPI, vol. 13(24), pages 1-18, December.
    11. Stančin, H. & Mikulčić, H. & Wang, X. & Duić, N., 2020. "A review on alternative fuels in future energy system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 128(C).
    12. García, Antonio & Monsalve-Serrano, Javier & Martinez-Boggio, Santiago & Soria Alcaide, Rafael, 2023. "Carbon footprint of battery electric vehicles considering average and marginal electricity mix," Energy, Elsevier, vol. 268(C).
    13. Zixuan Wang & Xiuzhang Li, 2021. "Demand Subsidy versus Production Regulation: Development of New Energy Vehicles in a Competitive Environment," Mathematics, MDPI, vol. 9(11), pages 1-22, June.
    14. Bhardwaj, Chandan & Axsen, Jonn & Kern, Florian & McCollum, David, 2020. "Why have multiple climate policies for light-duty vehicles? Policy mix rationales, interactions and research gaps," Transportation Research Part A: Policy and Practice, Elsevier, vol. 135(C), pages 309-326.
    15. Koon Hung Chan & Mingming Leng & Liping Liang, 2014. "Impact of tax reduction policies on consumer purchase of new automobiles: An analytical investigation with real data‐based experiments," Naval Research Logistics (NRL), John Wiley & Sons, vol. 61(8), pages 577-598, December.
    16. Lee, Dong-Yeon & Elgowainy, Amgad & Vijayagopal, Ram, 2019. "Well-to-wheel environmental implications of fuel economy targets for hydrogen fuel cell electric buses in the United States," Energy Policy, Elsevier, vol. 128(C), pages 565-583.
    17. Shawky Ismail, M. & Etman, Omar A. & Elhelw, Mohamed & Attia, Abdelhamid, 2023. "Decarbonization and enhancement of LNG cascade cycle by optimizing the heat rejection system, hourly evaluation," Energy, Elsevier, vol. 280(C).
    18. Johannes Full & Silja Hohmann & Sonja Ziehn & Edgar Gamero & Tobias Schließ & Hans-Peter Schmid & Robert Miehe & Alexander Sauer, 2023. "Perspectives of Biogas Plants as BECCS Facilities: A Comparative Analysis of Biomethane vs. Biohydrogen Production with Carbon Capture and Storage or Use (CCS/CCU)," Energies, MDPI, vol. 16(13), pages 1-16, June.
    19. Kurani, Kenneth S & Miller, Marshall & Sugihara, Claire & Stepnitz, Eli-Alston & Nesbitt, Kevin A, 2023. "Determinants of Medium- and Heavy-Duty Truck Fleet Turnover," Institute of Transportation Studies, Working Paper Series qt20n8n4mb, Institute of Transportation Studies, UC Davis.
    20. Zamri, M.F.M.A. & Hasmady, Saiful & Akhiar, Afifi & Ideris, Fazril & Shamsuddin, A.H. & Mofijur, M. & Fattah, I. M. Rizwanul & Mahlia, T.M.I., 2021. "A comprehensive review on anaerobic digestion of organic fraction of municipal solid waste," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:wireae:v:10:y:2021:i:4:n:e395. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=2041-8396 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.