IDEAS home Printed from https://ideas.repec.org/a/ags/aieabj/317028.html
   My bibliography  Save this article

Climate changes and new productive dynamics in the global wine sector

Author

Listed:
  • Lamonaca, Emilia
  • Santeramo, Fabio Gaetano
  • Seccia, Antonio

Abstract

Climate change has the potential to impact the agricultural sector and the wine sector in particular. The impacts of climate change are likely to differ across producing regions of wine. Future climate scenarios may push some regions into climatic regimes favourable to grape growing and wine production, with potential changes in areas planted with vines. We examine which is the linkage between climate change and productivity levels in the global wine sector. Within the framework of agricultural supply response, we assume that grapevines acreage and yield are a function of climate change. We find that grapevines yield suffers from higher temperatures during summer, whereas precipitations have a varying impact on grapevines depending on the cycle of grapevines. Differently, acreage share of grapevines tends to be favoured by higher annual temperatures, whereas greater annual precipitations tend to be detrimental. The impacts vary between Old World Producers and New World Producers, also due to heterogeneity in climate between them.

Suggested Citation

  • Lamonaca, Emilia & Santeramo, Fabio Gaetano & Seccia, Antonio, 2021. "Climate changes and new productive dynamics in the global wine sector," Bio-based and Applied Economics Journal, Italian Association of Agricultural and Applied Economics (AIEAA), vol. 10(2), April.
  • Handle: RePEc:ags:aieabj:317028
    DOI: 10.22004/ag.econ.317028
    as

    Download full text from publisher

    File URL: https://ageconsearch.umn.edu/record/317028/files/Lamonaca_et_al_BAE_2_2021.pdf
    Download Restriction: no

    File URL: https://libkey.io/10.22004/ag.econ.317028?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. M. Moriondo & G. Jones & B. Bois & C. Dibari & R. Ferrise & G. Trombi & M. Bindi, 2013. "Projected shifts of wine regions in response to climate change," Climatic Change, Springer, vol. 119(3), pages 825-839, August.
    2. Kahn, Matthew E. & Mohaddes, Kamiar & Ng, Ryan N.C. & Pesaran, M. Hashem & Raissi, Mehdi & Yang, Jui-Chung, 2021. "Long-term macroeconomic effects of climate change: A cross-country analysis," Energy Economics, Elsevier, vol. 104(C).
    3. David Roodman, 2009. "How to do xtabond2: An introduction to difference and system GMM in Stata," Stata Journal, StataCorp LP, vol. 9(1), pages 86-136, March.
    4. Barnwal, Prabhat & Kotani, Koji, 2013. "Climatic impacts across agricultural crop yield distributions: An application of quantile regression on rice crops in Andhra Pradesh, India," Ecological Economics, Elsevier, vol. 87(C), pages 95-109.
    5. Fabio Gaetano Santeramo, 2019. "Agri-food trade and non-tariff measures," Agrekon, Taylor & Francis Journals, vol. 58(4), pages 387-388, October.
    6. Hyunseok Kim & GianCarlo Moschini, 2018. "The Dynamics of Supply: U.S. Corn and Soybeans in the Biofuel Era," Land Economics, University of Wisconsin Press, vol. 94(4), pages 593-613.
    7. Sylvain Weber, 2010. "bacon: An effective way to detect outliers in multivariate data using Stata (and Mata)," Stata Journal, StataCorp LP, vol. 10(3), pages 331-338, September.
    8. Arnaud Costinot & Dave Donaldson & Cory Smith, 2016. "Evolving Comparative Advantage and the Impact of Climate Change in Agricultural Markets: Evidence from 1.7 Million Fields around the World," Journal of Political Economy, University of Chicago Press, vol. 124(1), pages 205-248.
    9. Nickell, Stephen J, 1981. "Biases in Dynamic Models with Fixed Effects," Econometrica, Econometric Society, vol. 49(6), pages 1417-1426, November.
    10. Macedo, Anthony & Rebelo, João & Gouveia, Sofia, 2019. "Export propensity and intensity in the wine industry: a fractional econometric approach," Bio-based and Applied Economics Journal, Italian Association of Agricultural and Applied Economics (AIEAA), vol. 8(3), December.
    11. Massetti, Emanuele & Mendelsohn, Robert & Chonabayashi, Shun, 2016. "How well do degree days over the growing season capture the effect of climate on farmland values?," Energy Economics, Elsevier, vol. 60(C), pages 144-150.
    12. Meressa, Abrha Megos & Navrud, Stale, 2020. "Not my cup of coffee: Farmers’ preferences for coffee variety traits – Lessons for crop breeding in the age of climate change," Bio-based and Applied Economics Journal, Italian Association of Agricultural and Applied Economics (AIEAA), vol. 9(3), December.
    13. Martina Bozzola & Emanuele Massetti & Robert Mendelsohn & Fabian Capitanio, 2018. "A Ricardian analysis of the impact of climate change on Italian agriculture," European Review of Agricultural Economics, Oxford University Press and the European Agricultural and Applied Economics Publications Foundation, vol. 45(1), pages 57-79.
    14. E. Briche & G. Beltrando & S. Somot & H. Quenol, 2014. "Critical analysis of simulated daily temperature data from the ARPEGE-climate model: application to climate change in the Champagne wine-producing region," Climatic Change, Springer, vol. 123(2), pages 241-254, March.
    15. Scott M. Swinton & Robert P. King, 1991. "Evaluating Robust Regression Techniques for Detrending Crop Yield Data with Nonnormal Errors," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 73(2), pages 446-451.
    16. Santeramo, Fabio Gaetano, 2014. "On the Estimation of Supply and Demand Elasticities of Agricultural Commodites," MPRA Paper 56126, University Library of Munich, Germany.
    17. Gouel, Christophe & Laborde, David, 2021. "The crucial role of domestic and international market-mediated adaptation to climate change," Journal of Environmental Economics and Management, Elsevier, vol. 106(C).
    18. Mendelsohn, Robert & Nordhaus, William D & Shaw, Daigee, 1994. "The Impact of Global Warming on Agriculture: A Ricardian Analysis," American Economic Review, American Economic Association, vol. 84(4), pages 753-771, September.
    19. Reilly, John & Hohmann, Neil, 1993. "Climate Change and Agriculture: The Role of International Trade," American Economic Review, American Economic Association, vol. 83(2), pages 306-312, May.
    20. Billor, Nedret & Hadi, Ali S. & Velleman, Paul F., 2000. "BACON: blocked adaptive computationally efficient outlier nominators," Computational Statistics & Data Analysis, Elsevier, vol. 34(3), pages 279-298, September.
    21. Olivier Deschênes & Michael Greenstone, 2007. "The Economic Impacts of Climate Change: Evidence from Agricultural Output and Random Fluctuations in Weather," American Economic Review, American Economic Association, vol. 97(1), pages 354-385, March.
    22. Sarah Conradt & Robert Finger & Raushan Bokusheva, 2015. "Tailored to the extremes: Quantile regression for index-based insurance contract design," Agricultural Economics, International Association of Agricultural Economists, vol. 46(4), pages 537-547, July.
    23. Santeramo, Fabio Gaetano & Lamonaca, Emilia & Nardone, Gianluca & Seccia, Antonio, 2018. "The Benefits of Country-specific Non-Tariff Measures in World Wine Trade," MPRA Paper 90647, University Library of Munich, Germany.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lamonaca, Emilia & Seccia, Antonio & Santeramo, Fabio Gaetano, 2023. "Climate cha(lle)nges in global wine production and trade patterns," MPRA Paper 119296, University Library of Munich, Germany.
    2. Fabio G., Santeramo & Ilaria, Russo & Emilia, Lamonaca, 2022. "Italian subsidised crop insurance: what the role of policy changes," MPRA Paper 115299, University Library of Munich, Germany.
    3. Santeramo, Fabio Gaetano & Maccarone, Irene, 2022. "Analisi storica delle rese agricole e la variabilità del clima: Analisi dei dati italiani sui cereali [Historical crop yields and climate variability: analysis of Italian cereal data]," MPRA Paper 114135, University Library of Munich, Germany, revised 04 Aug 2022.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Santeramo, Fabio Gaetano & Bozzola, Martina & Lamonaca, Emilia, 2020. "Impacts of Climate Change on Global Agri-Food Trade," 2019: Recent Advances in Applied General Equilibrium Modeling: Relevance and Application to Agricultural Trade Analysis, December 8-10, 2019, Washington, DC 339375, International Agricultural Trade Research Consortium.
    2. Lamonaca, Emilia & Seccia, Antonio & Santeramo, Fabio Gaetano, 2023. "Climate cha(lle)nges in global wine production and trade patterns," MPRA Paper 119296, University Library of Munich, Germany.
    3. Fabio Gaetano Santeramo & Dragan Miljkovic & Emilia Lamonaca, 2021. "Agri-food trade and climate change," Economia agro-alimentare, FrancoAngeli Editore, vol. 23(1), pages 1-18.
    4. Bareille, François & Chakir, Raja, 2023. "The impact of climate change on agriculture: A repeat-Ricardian analysis," Journal of Environmental Economics and Management, Elsevier, vol. 119(C).
    5. Xiaoguang Chen & Madhu Khanna & Lu Yang, 2022. "The impacts of temperature on Chinese food processing firms," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 66(2), pages 256-279, April.
    6. Meyer, Kevin Michael, 2017. "Three essays on environmental and resource economics," ISU General Staff Papers 201701010800006585, Iowa State University, Department of Economics.
    7. Chen, Zhangliang & Dall'Erba, Sandy, 2018. "Drought, Domestic Trade And Agricultural Profit: Theory And Evidence," 2018 Annual Meeting, August 5-7, Washington, D.C. 274397, Agricultural and Applied Economics Association.
    8. Sandy Dall'Erba & Zhangliang Chen & Noé J. Nava, 2021. "U.S. Interstate Trade Will Mitigate the Negative Impact of Climate Change on Crop Profit," American Journal of Agricultural Economics, John Wiley & Sons, vol. 103(5), pages 1720-1741, October.
    9. Cui, Xiaomeng, 2020. "Climate change and adaptation in agriculture: Evidence from US cropping patterns," Journal of Environmental Economics and Management, Elsevier, vol. 101(C).
    10. Kan, Iddo & Reznik, Ami & Kaminski, Jonathan & Kimhi, Ayal, 2023. "The impacts of climate change on cropland allocation, crop production, output prices and social welfare in Israel: A structural econometric framework," Food Policy, Elsevier, vol. 115(C).
    11. Charlotte Fabri & Michele Moretti & Steven Van Passel, 2022. "On the (ir)relevance of heatwaves in climate change impacts on European agriculture," Climatic Change, Springer, vol. 174(1), pages 1-20, September.
    12. Canarella, Giorgio & Miller, Stephen M., 2022. "Firm size, corporate debt, R&D activity, and agency costs: Exploring dynamic and non-linear effects," The Journal of Economic Asymmetries, Elsevier, vol. 25(C).
    13. Olper, Alessandro & Maugeri, Maurizio & Manara, Veronica & Raimondi, Valentina, 2021. "Weather, climate and economic outcomes: Evidence from Italy," Ecological Economics, Elsevier, vol. 189(C).
    14. Surender Kumar & Madhu Khanna, 2023. "Distributional heterogeneity in climate change impacts and adaptation: Evidence from Indian agriculture," Agricultural Economics, International Association of Agricultural Economists, vol. 54(2), pages 147-160, March.
    15. Abdul Quddoos & Klaus Salhofer & Ulrich B. Morawetz, 2023. "Utilising farm‐level panel data to estimate climate change impacts and adaptation potentials," Journal of Agricultural Economics, Wiley Blackwell, vol. 74(1), pages 75-99, February.
    16. Emanuele Massetti & Steven Van Passel & Camila Apablaza, 2018. "Is Western European Agriculture Resilient to High Temperatures?," CESifo Working Paper Series 7286, CESifo.
    17. Fernando M. Aragón & Francisco Oteiza & Juan Pablo Rud, 2018. "Climate change and agriculture: farmer adaptation to extreme heat," IFS Working Papers W18/06, Institute for Fiscal Studies.
    18. Francisco Costa & Fabien Forge & Jason Garred & João Paulo Pessoa, 2023. "The Impact of Climate Change on Risk and Return in Indian Agriculture," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 85(1), pages 1-27, May.
    19. Gregory Casey & Stephie Fried & Ethan Goode, 2023. "Projecting the Impact of Rising Temperatures: The Role of Macroeconomic Dynamics," IMF Economic Review, Palgrave Macmillan;International Monetary Fund, vol. 71(3), pages 688-718, September.
    20. Massetti, Emanuele & Mendelsohn, Robert, 2017. "Do Temperature Thresholds Threaten American Farmland?," EIA: Climate Change: Economic Impacts and Adaptation 263482, Fondazione Eni Enrico Mattei (FEEM).

    More about this item

    Keywords

    Production Economics;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ags:aieabj:317028. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: AgEcon Search (email available below). General contact details of provider: https://edirc.repec.org/data/aieaaea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.