IDEAS home Printed from https://ideas.repec.org/r/spr/eurphb/v88y2015i9p1-3010.1140-epjb-e2015-60657-4.html
   My bibliography  Save this item

Modern temporal network theory: a colloquium

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Radu Tanase & Claudio J Tessone & René Algesheimer, 2018. "Identification of influencers through the wisdom of crowds," PLOS ONE, Public Library of Science, vol. 13(7), pages 1-15, July.
  2. Lee, Sang Hoon & Holme, Petter, 2019. "Navigating temporal networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 513(C), pages 288-296.
  3. Daniel Fraiman & Nicolas Fraiman & Ricardo Fraiman, 2017. "Nonparametric statistics of dynamic networks with distinguishable nodes," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 26(3), pages 546-573, September.
  4. Li, Mingwu & Dankowicz, Harry, 2019. "Impact of temporal network structures on the speed of consensus formation in opinion dynamics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 523(C), pages 1355-1370.
  5. Mitja Steinbacher & Matthias Raddant & Fariba Karimi & Eva Camacho Cuena & Simone Alfarano & Giulia Iori & Thomas Lux, 2021. "Advances in the agent-based modeling of economic and social behavior," SN Business & Economics, Springer, vol. 1(7), pages 1-24, July.
  6. Pietro DeLellis & Anna DiMeglio & Franco Garofalo & Francesco Lo Iudice, 2017. "The evolving cobweb of relations among partially rational investors," PLOS ONE, Public Library of Science, vol. 12(2), pages 1-21, February.
  7. Sindhuja Ranganathan & Mikko Kivelä & Juho Kanniainen, 2018. "Dynamics of investor spanning trees around dot-com bubble," PLOS ONE, Public Library of Science, vol. 13(6), pages 1-14, June.
  8. Neil Hwang & Jiarui Xu & Shirshendu Chatterjee & Sharmodeep Bhattacharyya, 2022. "The Bethe Hessian and Information Theoretic Approaches for Online Change-Point Detection in Network Data," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 84(1), pages 283-320, June.
  9. Anzhi Sheng & Qi Su & Aming Li & Long Wang & Joshua B. Plotkin, 2023. "Constructing temporal networks with bursty activity patterns," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
  10. Batagelj, Vladimir & Maltseva, Daria, 2020. "Temporal bibliographic networks," Journal of Informetrics, Elsevier, vol. 14(1).
  11. Jordan Cambe & Sebastian Grauwin & Patrick Flandrin & Pablo Jensen, 2022. "A new clustering method to explore the dynamics of research communities," Scientometrics, Springer;Akadémiai Kiadó, vol. 127(8), pages 4459-4482, August.
  12. Michael Lebacher & Paul W. Thurner & Göran Kauermann, 2021. "A dynamic separable network model with actor heterogeneity: An application to global weapons transfers," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 184(1), pages 201-226, January.
  13. Panayotis Christidis & Álvaro Gomez Losada, 2019. "Email Based Institutional Network Analysis: Applications and Risks," Social Sciences, MDPI, vol. 8(11), pages 1-14, November.
  14. Ma, Xiaoke & Sun, Penggang & Wang, Yu, 2018. "Graph regularized nonnegative matrix factorization for temporal link prediction in dynamic networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 496(C), pages 121-136.
  15. Daizaburo Shizuka & Allison E Johnson & Leigh Simmons, 2020. "How demographic processes shape animal social networks," Behavioral Ecology, International Society for Behavioral Ecology, vol. 31(1), pages 1-11.
  16. Jia, Mengqi & Li, Xin & Ding, Li, 2021. "Epidemic spreading with awareness on multi-layer activity-driven networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 579(C).
  17. Tao, Li & Kong, Shengzhou & He, Langzhou & Zhang, Fan & Li, Xianghua & Jia, Tao & Han, Zhen, 2022. "A sequential-path tree-based centrality for identifying influential spreaders in temporal networks," Chaos, Solitons & Fractals, Elsevier, vol. 165(P1).
  18. Nie, Chun-Xiao, 2022. "Generalized correlation dimension and heterogeneity of network spaces," Chaos, Solitons & Fractals, Elsevier, vol. 162(C).
  19. Aming Li & Yang-Yu Liu, 2020. "Controlling Network Dynamics," Advances in Complex Systems (ACS), World Scientific Publishing Co. Pte. Ltd., vol. 22(07n08), pages 1-19, February.
  20. Harsh Gupta & Mason A. Porter, 2020. "Mixed Logit Models and Network Formation," Papers 2006.16516, arXiv.org, revised Aug 2022.
  21. Dantsuji, Takao & Sugishita, Kashin & Fukuda, Daisuke, 2023. "Understanding changes in travel patterns during the COVID-19 outbreak in the three major metropolitan areas of Japan," Transportation Research Part A: Policy and Practice, Elsevier, vol. 175(C).
  22. Iglesias-Perez, Sergio & Criado, Regino, 2023. "Temporal metagraph: A new mathematical approach to capture temporal dependencies and interactions between different entities over time," Chaos, Solitons & Fractals, Elsevier, vol. 175(P1).
  23. Christos Ellinas & Christos Nicolaides & Naoki Masuda, 2022. "Mitigation strategies against cascading failures within a project activity network," Journal of Computational Social Science, Springer, vol. 5(1), pages 383-400, May.
  24. Mathilde Vernet & Yoann Pigné & Éric Sanlaville, 2023. "A study of connectivity on dynamic graphs: computing persistent connected components," 4OR, Springer, vol. 21(2), pages 205-233, June.
  25. Zhu, He & Ma, Jing, 2018. "Knowledge diffusion in complex networks by considering time-varying information channels," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 494(C), pages 225-235.
  26. Fei Wang & Zhenfang Zhu & Peiyu Liu & Peipei Wang, 2019. "Influence Maximization in Social Network Considering Memory Effect and Social Reinforcement Effect," Future Internet, MDPI, vol. 11(4), pages 1-16, April.
  27. C Matias & T Rebafka & F Villers, 2018. "A semiparametric extension of the stochastic block model for longitudinal networks," Biometrika, Biometrika Trust, vol. 105(3), pages 665-680.
  28. Karan, Rituraj & Biswal, Bibhu, 2017. "A model for evolution of overlapping community networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 474(C), pages 380-390.
  29. Hongyong Wang & Ping Xu & Fengwei Zhong, 2022. "Modeling and Feature Analysis of Air Traffic Complexity Propagation," Sustainability, MDPI, vol. 14(18), pages 1-21, September.
  30. Catherine Matias & Vincent Miele, 2017. "Statistical clustering of temporal networks through a dynamic stochastic block model," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 79(4), pages 1119-1141, September.
  31. Li, Huichun & Zhang, Xue & Zhao, Chengli, 2021. "Explaining social events through community evolution on temporal networks," Applied Mathematics and Computation, Elsevier, vol. 404(C).
  32. Chae, Bongsug (Kevin), 2019. "A General framework for studying the evolution of the digital innovation ecosystem: The case of big data," International Journal of Information Management, Elsevier, vol. 45(C), pages 83-94.
  33. Qiao Chen & Jianquan Cheng & Zhiqin Wu, 2019. "Evolution of the Cultural Trade Network in “the Belt and Road” Region: Implication for Global Cultural Sustainability," Sustainability, MDPI, vol. 11(10), pages 1-23, May.
  34. Andrew Mellor, 2019. "Event Graphs: Advances And Applications Of Second-Order Time-Unfolded Temporal Network Models," Advances in Complex Systems (ACS), World Scientific Publishing Co. Pte. Ltd., vol. 22(03), pages 1-26, May.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.