IDEAS home Printed from https://ideas.repec.org/r/ris/duthrp/2013_003.html
   My bibliography  Save this item

Forecasting daily and monthly exchange rates with machine learning techniques

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Lu, Yao & Zhao, Zhihui & Tian, Yuan & Zhan, Minghua, 2024. "How does the economic structure break change the forecast effect of money and credit on output? Evidence based on machine learning algorithms," Pacific-Basin Finance Journal, Elsevier, vol. 84(C).
  2. Tasadduq Imam, 2021. "Model selection for one‐day‐ahead AUD/USD, AUD/EUR forecasts," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 26(2), pages 1808-1824, April.
  3. Biswas, Rita & Li, Xiao & Piccotti, Louis R., 2023. "Do macroeconomic variables drive exchange rates independently?," Finance Research Letters, Elsevier, vol. 52(C).
  4. Mohammad Abdullah & Mohammad Ashraful Ferdous Chowdhury & Ajim Uddin & Syed Moudud‐Ul‐Huq, 2023. "Forecasting nonperforming loans using machine learning," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 42(7), pages 1664-1689, November.
  5. Erdinc Akyildirim & Oguzhan Cepni & Shaen Corbet & Gazi Salah Uddin, 2023. "Forecasting mid-price movement of Bitcoin futures using machine learning," Annals of Operations Research, Springer, vol. 330(1), pages 553-584, November.
  6. Fernandez, Raul & Palma Guizar, Brenda & Rho, Caterina, 2021. "A sentiment-based risk indicator for the Mexican financial sector," Latin American Journal of Central Banking (previously Monetaria), Elsevier, vol. 2(3).
  7. He Jiang, 2023. "Forecasting global solar radiation using a robust regularization approach with mixture kernels," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 42(8), pages 1989-2010, December.
  8. Darvas, Zsolt & Schepp, Zoltán, 2025. "Forecasting the daily exchange rate of the UK pound sterling against the US dollar," Finance Research Letters, Elsevier, vol. 71(C).
  9. Rangan Gupta & Tahir Suleman & Mark E. Wohar, 2019. "Exchange rate returns and volatility: the role of time-varying rare disaster risks," The European Journal of Finance, Taylor & Francis Journals, vol. 25(2), pages 190-203, January.
  10. Plakandaras, Vasilios & Gogas, Periklis & Papadimitriou, Theophilos & Gupta, Rangan, 2019. "A re-evaluation of the term spread as a leading indicator," International Review of Economics & Finance, Elsevier, vol. 64(C), pages 476-492.
  11. Vasilios Plakandaras & Periklis Gogas & Theophilos Papadimitriou & Rangan Gupta, 2016. "The Term Premium as a Leading Macroeconomic Indicator," Working Papers 201613, University of Pretoria, Department of Economics.
  12. Bangzhu Zhu & Shunxin Ye & Ping Wang & Julien Chevallier & Yi‐Ming Wei, 2022. "Forecasting carbon price using a multi‐objective least squares support vector machine with mixture kernels," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 41(1), pages 100-117, January.
  13. Bolivar, Osmar, 2024. "GDP nowcasting: A machine learning and remote sensing data-based approach for Bolivia," Latin American Journal of Central Banking (previously Monetaria), Elsevier, vol. 5(3).
  14. Plakandaras, Vasilios & Gupta, Rangan & Wohar, Mark E., 2017. "The depreciation of the pound post-Brexit: Could it have been predicted?," Finance Research Letters, Elsevier, vol. 21(C), pages 206-213.
  15. Amat, Christophe & Michalski, Tomasz & Stoltz, Gilles, 2018. "Fundamentals and exchange rate forecastability with simple machine learning methods," Journal of International Money and Finance, Elsevier, vol. 88(C), pages 1-24.
  16. Alexakis, Christos & Gogas, Periklis & Petrella, Giovanni & Polemis, Michael & Salvadè, Federica, 2025. "Investigating the investment readiness of European SMEs: A machine learning approach," International Review of Financial Analysis, Elsevier, vol. 105(C).
  17. Alexandridis, Antonios K. & Panopoulou, Ekaterini & Souropanis, Ioannis, 2024. "Forecasting exchange rate volatility: An amalgamation approach," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 97(C).
  18. Mirza, Nawazish & Rizvi, Syed Kumail Abbas & Naqvi, Bushra & Umar, Muhammad, 2024. "Inflation prediction in emerging economies: Machine learning and FX reserves integration for enhanced forecasting," International Review of Financial Analysis, Elsevier, vol. 94(C).
  19. Theophilos Papadimitriou & Periklis Gogas & Athanasios Fotios Athanasiou, 2020. "Forecasting S&P 500 spikes: an SVM approach," Digital Finance, Springer, vol. 2(3), pages 241-258, December.
  20. Vasilios Plakandaras & Theophilos Papadimitriou & Periklis Gogas & Konstantinos Diamantaras, 2015. "Market sentiment and exchange rate directional forecasting," Algorithmic Finance, IOS Press, vol. 4(1-2), pages 69-79.
  21. Vasilios Plakandaras & Periklis Gogas & Theophilos Papadimitriou, 2021. "Gold Against the Machine," Computational Economics, Springer;Society for Computational Economics, vol. 57(1), pages 5-28, January.
  22. Sun, Shaolong & Wang, Shouyang & Wei, Yunjie, 2019. "A new multiscale decomposition ensemble approach for forecasting exchange rates," Economic Modelling, Elsevier, vol. 81(C), pages 49-58.
  23. Juan Carlos Escanciano & Ricardo Parra, 2024. "Extending the Scope of Inference About Predictive Ability to Machine Learning Methods," Papers 2402.12838, arXiv.org, revised May 2025.
  24. Plakandaras, Vasilios & Ji, Qiang, 2022. "Intrinsic decompositions in gold forecasting," Journal of Commodity Markets, Elsevier, vol. 28(C).
  25. Paolo Fornaro & Henri Luomaranta, 2020. "Nowcasting Finnish real economic activity: a machine learning approach," Empirical Economics, Springer, vol. 58(1), pages 55-71, January.
  26. Rangan Gupta & Vasilios Plakandaras, 2019. "Efficiency in BRICS Currency Markets Using Long-Spans of Data: Evidence from Model-Free Tests of Directional Predictability," Journal of Economics and Behavioral Studies, AMH International, vol. 11(1), pages 152-165.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.