IDEAS home Printed from https://ideas.repec.org/r/gwc/wpaper/2014-003.html

What Can We Learn From Revisions To The Greenbook Forecasts?

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Lixiong Yang, 2022. "Threshold mixed data sampling (TMIDAS) regression models with an application to GDP forecast errors," Empirical Economics, Springer, vol. 62(2), pages 533-551, February.
  2. Constantin Bürgi, 2020. "Expectation Formation and the Persistence of Shocks," Working Papers 2020-005, The George Washington University, The Center for Economic Research, revised Sep 2020.
  3. Katharina Glass & Ulrich Fritsche, 2015. "Real-time Macroeconomic Data and Uncertainty," Macroeconomics and Finance Series 201406, University of Hamburg, Department of Socioeconomics.
  4. Granziera, Eleonora & Jalasjoki, Pirkka & Paloviita, Maritta, 2024. "The bias of the ECB inflation projections: A State-dependent analysis," Bank of Finland Research Discussion Papers 4/2024, Bank of Finland.
  5. Pierre L. Siklos, 2020. "U.S. Monetary Policy since the 1950s and the Changing Content of FOMC Minutes," Southern Economic Journal, John Wiley & Sons, vol. 86(3), pages 1192-1213, January.
  6. Eleonora Granziera & Pirkka Jalasjoki & Maritta Paloviita, 2025. "The Bias of the ECB Inflation Projections: A State‐Dependent Analysis," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 44(3), pages 922-940, April.
  7. Iregui, Ana María & Núñez, Héctor M. & Otero, Jesús, 2021. "Testing the efficiency of inflation and exchange rate forecast revisions in a changing economic environment," Journal of Economic Behavior & Organization, Elsevier, vol. 187(C), pages 290-314.
  8. Berge, Travis J. & Chang, Andrew C. & Sinha, Nitish R., 2019. "Evaluating the conditionality of judgmental forecasts," International Journal of Forecasting, Elsevier, vol. 35(4), pages 1627-1635.
  9. Andrew C. Chang & Trace J. Levinson, 2020. "Raiders of the Lost High-Frequency Forecasts: New Data and Evidence on the Efficiency of the Fed's Forecasting," Finance and Economics Discussion Series 2020-090, Board of Governors of the Federal Reserve System (U.S.).
  10. G. Kontogeorgos & K. Lambrias, 2022. "Evaluating the Eurosystem/ECB staff macroeconomic projections: The first 20 years," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 41(2), pages 213-229, March.
  11. Dovern, Jonas & Jannsen, Nils, 2017. "Systematic errors in growth expectations over the business cycle," International Journal of Forecasting, Elsevier, vol. 33(4), pages 760-769.
  12. Constantin Burgi, 2016. "What Do We Lose When We Average Expectations?," Working Papers 2016-013, The George Washington University, The Center for Economic Research.
  13. Eleonora Granziera & Pirkka Jalasjoki & Maritta Paloviita, 2021. "The Bias and Efficiency of the ECB Inflation Projections: a State Dependent Analysis," Working Paper 2021/1, Norges Bank.
  14. Kuethe, Todd H. & Hubbs, Todd & Sanders, Dwight R., 2018. "Evaluating the USDA’s Net Farm Income Forecast," Journal of Agricultural and Resource Economics, Western Agricultural Economics Association, vol. 43(3), September.
  15. Travis J. Berge, 2023. "Time-Varying Uncertainty of the Federal Reserve's Output Gap Estimate," The Review of Economics and Statistics, MIT Press, vol. 105(5), pages 1191-1206, September.
  16. Tara M. Sinclair, 2019. "Continuities and Discontinuities in Economic Forecasting," Working Papers 2019-003, The George Washington University, The Center for Economic Research.
  17. Sergey V. Smirnov & Daria A. Avdeeva, 2016. "Wishful Bias in Predicting Us Recessions: Indirect Evidence," HSE Working papers WP BRP 135/EC/2016, National Research University Higher School of Economics.
  18. Granziera, Eleonora & Jalasjoki, Pirkka & Paloviita, Maritta, 2021. "The bias and efficiency of the ECB inflation projections: A state dependent analysis," Bank of Finland Research Discussion Papers 7/2021, Bank of Finland.
  19. Deschamps, Bruno & Ioannidis, Christos & Ka, Kook, 2020. "High-frequency credit spread information and macroeconomic forecast revision," International Journal of Forecasting, Elsevier, vol. 36(2), pages 358-372.
  20. Granziera, Eleonora & Jalasjoki, Pirkka & Paloviita, Maritta, 2021. "The bias and efficiency of the ECB inflation projections: a State dependent analysis," Research Discussion Papers 7/2021, Bank of Finland.
  21. Andrew C. Chang & Trace J. Levinson, 2023. "Raiders of the lost high‐frequency forecasts: New data and evidence on the efficiency of the Fed's forecasting," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 38(1), pages 88-104, January.
  22. repec:zbw:bofrdp:2021_007 is not listed on IDEAS
  23. Jacobs, Jan P.A.M. & van Norden, Simon, 2016. "Why are initial estimates of productivity growth so unreliable?," Journal of Macroeconomics, Elsevier, vol. 47(PB), pages 200-213.
  24. Yoichi Tsuchiya, 2021. "The value added of the Bank of Japan's range forecasts," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 40(5), pages 817-833, August.
  25. Lixiong Yang, 2020. "State-dependent biases and the quality of China’s preliminary GDP announcements," Empirical Economics, Springer, vol. 59(6), pages 2663-2687, December.
  26. Xie, Zixiong & Hsu, Shih-Hsun, 2016. "Time varying biases and the state of the economy," International Journal of Forecasting, Elsevier, vol. 32(3), pages 716-725.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.