IDEAS home Printed from https://ideas.repec.org/r/eee/rensus/v135y2021ics1364032120304111.html
   My bibliography  Save this item

Data-driven predictive control for unlocking building energy flexibility: A review

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Kaabinejadian, Amirreza & Pozarlik, Artur & Acar, Canan, 2025. "A systematic review of predictive, optimization, and smart control strategies for hydrogen-based building heating systems," Applied Energy, Elsevier, vol. 379(C).
  2. Guo, Yurun & Wang, Shugang & Wang, Jihong & Zhang, Tengfei & Ma, Zhenjun & Jiang, Shuang, 2024. "Key district heating technologies for building energy flexibility: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).
  3. Martín Pensado-Mariño & Lara Febrero-Garrido & Pablo Eguía-Oller & Enrique Granada-Álvarez, 2021. "Feasibility of Different Weather Data Sources Applied to Building Indoor Temperature Estimation Using LSTM Neural Networks," Sustainability, MDPI, vol. 13(24), pages 1-15, December.
  4. Corcoran, Lloyd & Saikia, Pranaynil & Ugalde-Loo, Carlos E. & Abeysekera, Muditha, 2025. "An effective methodology to quantify cooling demand in the UK housing stock," Applied Energy, Elsevier, vol. 380(C).
  5. Gokhale, Gargya & Claessens, Bert & Develder, Chris, 2022. "Physics informed neural networks for control oriented thermal modeling of buildings," Applied Energy, Elsevier, vol. 314(C).
  6. Zhang, Chaobo & Li, Junyang & Zhao, Yang & Li, Tingting & Chen, Qi & Zhang, Xuejun & Qiu, Weikang, 2021. "Problem of data imbalance in building energy load prediction: Concept, influence, and solution," Applied Energy, Elsevier, vol. 297(C).
  7. Mahmood, Farhat & Govindan, Rajesh & Bermak, Amine & Yang, David & Al-Ansari, Tareq, 2023. "Data-driven robust model predictive control for greenhouse temperature control and energy utilisation assessment," Applied Energy, Elsevier, vol. 343(C).
  8. Gasser, Jan & Cai, Hanmin & Karagiannopoulos, Stavros & Heer, Philipp & Hug, Gabriela, 2021. "Predictive energy management of residential buildings while self-reporting flexibility envelope," Applied Energy, Elsevier, vol. 288(C).
  9. Bünning, Felix & Huber, Benjamin & Schalbetter, Adrian & Aboudonia, Ahmed & Hudoba de Badyn, Mathias & Heer, Philipp & Smith, Roy S. & Lygeros, John, 2022. "Physics-informed linear regression is competitive with two Machine Learning methods in residential building MPC," Applied Energy, Elsevier, vol. 310(C).
  10. Walnum, Harald Taxt & Sartori, Igor & Ward, Peder & Gros, Sebastien, 2025. "Demonstration of a low-cost solution for implementing MPC in commercial buildings with legacy equipment," Applied Energy, Elsevier, vol. 380(C).
  11. Khatibi, Mahmood & Rahnama, Samira & Vogler-Finck, Pierre & Dimon Bendtsen, Jan & Afshari, Alireza, 2023. "Towards designing an aggregator to activate the energy flexibility of multi-zone buildings using a hierarchical model-based scheme," Applied Energy, Elsevier, vol. 333(C).
  12. Yang, Shiyu & Oliver Gao, H. & You, Fengqi, 2022. "Model predictive control in phase-change-material-wallboard-enhanced building energy management considering electricity price dynamics," Applied Energy, Elsevier, vol. 326(C).
  13. Vašak, Mario & Banjac, Anita & Hure, Nikola & Novak, Hrvoje & Kovačević, Marko, 2023. "Predictive control based assessment of building demand flexibility in fixed time windows," Applied Energy, Elsevier, vol. 329(C).
  14. Dorokhova, Marina & Martinson, Yann & Ballif, Christophe & Wyrsch, Nicolas, 2021. "Deep reinforcement learning control of electric vehicle charging in the presence of photovoltaic generation," Applied Energy, Elsevier, vol. 301(C).
  15. Tien, Paige Wenbin & Wei, Shuangyu & Calautit, John Kaiser & Darkwa, Jo & Wood, Christopher, 2022. "Real-time monitoring of occupancy activities and window opening within buildings using an integrated deep learning-based approach for reducing energy demand," Applied Energy, Elsevier, vol. 308(C).
  16. Zhou, Yuekuan, 2022. "A regression learner-based approach for battery cycling ageing prediction―advances in energy management strategy and techno-economic analysis," Energy, Elsevier, vol. 256(C).
  17. Chen, Yibo & Gao, Junxi & Yang, Jianzhong & Berardi, Umberto & Cui, Guoyou, 2023. "An hour-ahead predictive control strategy for maximizing natural ventilation in passive buildings based on weather forecasting," Applied Energy, Elsevier, vol. 333(C).
  18. Deng, Zhipeng & Wang, Xuezheng & Jiang, Zixin & Zhou, Nianxin & Ge, Haiwang & Dong, Bing, 2023. "Evaluation of deploying data-driven predictive controls in buildings on a large scale for greenhouse gas emission reduction," Energy, Elsevier, vol. 270(C).
  19. Knudsen, Michael Dahl & Georges, Laurent & Skeie, Kristian Stenerud & Petersen, Steffen, 2021. "Experimental test of a black-box economic model predictive control for residential space heating," Applied Energy, Elsevier, vol. 298(C).
  20. Chen, Wei-Han & You, Fengqi, 2024. "Sustainable energy management and control for Decarbonization of complex multi-zone buildings with renewable solar and geothermal energies using machine learning, robust optimization, and predictive c," Applied Energy, Elsevier, vol. 372(C).
  21. Li, Guannan & Zhan, Lei & Fang, Xi & Gao, Jiajia & Xu, Chengliang & He, Xin & Deng, Jiahui & Xiong, Chenglong, 2024. "Performance comparison on improved data-driven building energy prediction under data shortage scenarios in four perspectives: Data generation, incremental learning, transfer learning, and physics-info," Energy, Elsevier, vol. 312(C).
  22. Wang, Qiaochu & Ding, Yan & Kong, Xiangfei & Tian, Zhe & Xu, Linrui & He, Qing, 2022. "Load pattern recognition based optimization method for energy flexibility in office buildings," Energy, Elsevier, vol. 254(PC).
  23. Luo, Na & Langevin, Jared & Chandra-Putra, Handi & Lee, Sang Hoon, 2022. "Quantifying the effect of multiple load flexibility strategies on commercial building electricity demand and services via surrogate modeling," Applied Energy, Elsevier, vol. 309(C).
  24. Hong, Seokho & Jang, Eunha & Cho, Jihyeon & Lee, Junsoo & Rhee, Jee Heon & Lee, Hyeongseok & Lee, Miyoung & Cha, Seung Hyun & Koo, Choongwan & Baik, Ok Mi & Heo, Yeonsook, 2024. "A living lab to develop smart home services for the residential welfare of older adults," Technology in Society, Elsevier, vol. 77(C).
  25. Bampoulas, Adamantios & Pallonetto, Fabiano & Mangina, Eleni & Finn, Donal P., 2022. "An ensemble learning-based framework for assessing the energy flexibility of residential buildings with multicomponent energy systems," Applied Energy, Elsevier, vol. 315(C).
  26. Hernandez-Matheus, Alejandro & Löschenbrand, Markus & Berg, Kjersti & Fuchs, Ida & Aragüés-Peñalba, Mònica & Bullich-Massagué, Eduard & Sumper, Andreas, 2022. "A systematic review of machine learning techniques related to local energy communities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 170(C).
  27. Jia, Xiongjie & Sang, Yichen & Li, Yanjun & Du, Wei & Zhang, Guolei, 2022. "Short-term forecasting for supercharged boiler safety performance based on advanced data-driven modelling framework," Energy, Elsevier, vol. 239(PE).
  28. Schreiber, Thomas & Netsch, Christoph & Eschweiler, Sören & Wang, Tianyuan & Storek, Thomas & Baranski, Marc & Müller, Dirk, 2021. "Application of data-driven methods for energy system modelling demonstrated on an adaptive cooling supply system," Energy, Elsevier, vol. 230(C).
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.