IDEAS home Printed from https://ideas.repec.org/r/eee/renene/v136y2019icp275-295.html
   My bibliography  Save this item

Wave energy assessment in the China adjacent seas on the basis of a 20-year SWAN simulation with unstructured grids

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Li, Jiangxia & Pan, Shunqi & Chen, Yongping & Yao, Yu & Xu, Conghao, 2022. "Assessment of combined wind and wave energy in the tropical cyclone affected region:An application in China seas," Energy, Elsevier, vol. 260(C).
  2. Orejarena-Rondón, Andrés F. & Restrepo, Juan C. & Correa-Metrio, Alex & Orfila, Alejandro, 2022. "Wave energy flux in the Caribbean Sea: Trends and variability," Renewable Energy, Elsevier, vol. 181(C), pages 616-629.
  3. Yang, Zhaoqing & García-Medina, Gabriel & Wu, Wei-Cheng & Wang, Taiping, 2020. "Characteristics and variability of the nearshore wave resource on the U.S. West Coast," Energy, Elsevier, vol. 203(C).
  4. Zhang, Na & Li, Shuai & Wu, Yongsheng & Wang, Keh-Han & Zhang, Qinghe & You, Zai-Jin & Wang, Jin, 2020. "Effects of sea ice on wave energy flux distribution in the Bohai Sea," Renewable Energy, Elsevier, vol. 162(C), pages 2330-2343.
  5. Wang, Yuhan & Dong, Sheng, 2022. "Array of concentric perforated cylindrical systems with torus oscillating bodies integrated on inner cylinders," Applied Energy, Elsevier, vol. 327(C).
  6. Xu, Sheng & Wang, Shan & Guedes Soares, C., 2019. "Review of mooring design for floating wave energy converters," Renewable and Sustainable Energy Reviews, Elsevier, vol. 111(C), pages 595-621.
  7. Castro-Santos, Laura & Filgueira-Vizoso, Almudena & Costoya, Xurxo & Arguilé-Pérez, Beatriz & Ribeiro, Américo Soares, 2024. "Economic viability of floating wave power farms considering the energy generated in the near future," Renewable Energy, Elsevier, vol. 222(C).
  8. Meng Shao & Shulei Zhang & Jinwei Sun & Zhixin Han & Zhuxiao Shao & Chuanxiu Yi, 2022. "GIS-MCDM-Based Approach to Site Selection of Wave Power Plants for Islands in China," Energies, MDPI, vol. 15(11), pages 1-24, June.
  9. P Patel, Ravi & Nagababu, Garlapati & Kachhwaha, Surendra Singh & V V Arun Kumar, Surisetty & M, Seemanth, 2022. "Combined wind and wave resource assessment and energy extraction along the Indian coast," Renewable Energy, Elsevier, vol. 195(C), pages 931-945.
  10. Rusu, Liliana, 2022. "The near future expected wave power in the coastal environment of the Iberian Peninsula," Renewable Energy, Elsevier, vol. 195(C), pages 657-669.
  11. Rusu, Liliana, 2020. "A projection of the expected wave power in the Black Sea until the end of the 21st century," Renewable Energy, Elsevier, vol. 160(C), pages 136-147.
  12. Harshinie Karunarathna & Pravin Maduwantha & Bahareh Kamranzad & Harsha Rathnasooriya & Kasun De Silva, 2020. "Impacts of Global Climate Change on the Future Ocean Wave Power Potential: A Case Study from the Indian Ocean," Energies, MDPI, vol. 13(11), pages 1-22, June.
  13. Sun, Ze & Zhang, Haicheng & Liu, Xiaolong & Ding, Jun & Xu, Daolin & Cai, Zhiwen, 2021. "Wave energy assessment of the Xisha Group Islands zone for the period 2010–2019," Energy, Elsevier, vol. 220(C).
  14. Kamranzad, Bahareh & Takara, Kaoru, 2020. "A climate-dependent sustainability index for wave energy resources in Northeast Asia," Energy, Elsevier, vol. 209(C).
  15. Karunarathna, Harshinie & Maduwantha, Pravin & Kamranzad, Bahareh & Rathnasooriya, Harsha & de Silva, Kasun, 2020. "Evaluation of spatio-temporal variability of ocean wave power resource around Sri Lanka," Energy, Elsevier, vol. 200(C).
  16. Shih-Chun Hsiao & Chao-Tzuen Cheng & Tzu-Yin Chang & Wei-Bo Chen & Han-Lun Wu & Jiun-Huei Jang & Lee-Yaw Lin, 2021. "Assessment of Offshore Wave Energy Resources in Taiwan Using Long-Term Dynamically Downscaled Winds from a Third-Generation Reanalysis Product," Energies, MDPI, vol. 14(3), pages 1-25, January.
  17. Shi, Xueli & Liang, Bingchen & Du, Shengtao & Shao, Zhuxiao & Li, Shaowu, 2022. "Wave energy assessment in the China East Adjacent Seas based on a 25-year wave-current interaction numerical simulation," Renewable Energy, Elsevier, vol. 199(C), pages 1381-1407.
  18. Huang, Weinan & Dong, Sheng, 2021. "Improved short-term prediction of significant wave height by decomposing deterministic and stochastic components," Renewable Energy, Elsevier, vol. 177(C), pages 743-758.
  19. Américo S. Ribeiro & Maite deCastro & Liliana Rusu & Mariana Bernardino & João M. Dias & Moncho Gomez-Gesteira, 2020. "Evaluating the Future Efficiency of Wave Energy Converters along the NW Coast of the Iberian Peninsula," Energies, MDPI, vol. 13(14), pages 1-15, July.
  20. Chen, Y.-L. & Lin, C.-C. & Chen, J.-H. & Lee, Y.-H. & Tzang, S.-Y., 2023. "Characteristics of wave energy resources on coastal waters of northeast Taiwan," Renewable Energy, Elsevier, vol. 202(C), pages 1-16.
  21. Mahmoodi, Kumars & Ghassemi, Hassan & Razminia, Abolhassan, 2020. "Performance assessment of a two-body wave energy converter based on the Persian Gulf wave climate," Renewable Energy, Elsevier, vol. 159(C), pages 519-537.
  22. Laura Castro-Santos & Ana Rute Bento & Carlos Guedes Soares, 2020. "The Economic Feasibility of Floating Offshore Wave Energy Farms in the North of Spain," Energies, MDPI, vol. 13(4), pages 1-19, February.
  23. Liu, Jin & Meucci, Alberto & Liu, Qingxiang & Babanin, Alexander V. & Ierodiaconou, Daniel & Xu, Xingkun & Young, Ian R., 2023. "A high-resolution wave energy assessment of south-east Australia based on a 40-year hindcast," Renewable Energy, Elsevier, vol. 215(C).
  24. Wen, Yi & Kamranzad, Bahareh & Lin, Pengzhi, 2022. "Joint exploitation potential of offshore wind and wave energy along the south and southeast coasts of China," Energy, Elsevier, vol. 249(C).
  25. García Medina, Gabriel & Yang, Zhaoqing & Li, Ning & Cheung, Kwok Fai & Lutu-McMoore, Elinor, 2023. "Wave climate and energy resources in American Samoa from a 42-year high-resolution hindcast," Renewable Energy, Elsevier, vol. 210(C), pages 604-617.
  26. Fairley, Iain & Lewis, Matthew & Robertson, Bryson & Hemer, Mark & Masters, Ian & Horrillo-Caraballo, Jose & Karunarathna, Harshinie & Reeve, Dominic E., 2020. "A classification system for global wave energy resources based on multivariate clustering," Applied Energy, Elsevier, vol. 262(C).
  27. Rusu, Liliana, 2019. "Evaluation of the near future wave energy resources in the Black Sea under two climate scenarios," Renewable Energy, Elsevier, vol. 142(C), pages 137-146.
  28. Kamranzad, Bahareh & Lin, Pengzhi, 2020. "Sustainability of wave energy resources in the South China Sea based on five decades of changing climate," Energy, Elsevier, vol. 210(C).
  29. Kamranzad, Bahareh & Lin, Pengzhi & Iglesias, Gregorio, 2021. "Combining methodologies on the impact of inter and intra-annual variation of wave energy on selection of suitable location and technology," Renewable Energy, Elsevier, vol. 172(C), pages 697-713.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.