IDEAS home Printed from https://ideas.repec.org/r/eee/insuma/v35y2004i2p223-243.html
   My bibliography  Save this item

Dynamic capital allocation with distortion risk measures

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Tsanakas, Andreas, 2008. "Risk measurement in the presence of background risk," Insurance: Mathematics and Economics, Elsevier, vol. 42(2), pages 520-528, April.
  2. van Gulick, G., 2010. "Game theory and applications in finance," Other publications TiSEM e4b6c334-f611-46fa-b2ef-7, Tilburg University, School of Economics and Management.
  3. Jaume Belles-Sampera & Montserrat Guillen & Miguel Santolino, 2023. "Haircut Capital Allocation as the Solution of a Quadratic Optimisation Problem," Mathematics, MDPI, vol. 11(18), pages 1-17, September.
  4. Schumacher Johannes M., 2018. "Distortion risk measures, ROC curves, and distortion divergence," Statistics & Risk Modeling, De Gruyter, vol. 35(1-2), pages 35-50, January.
  5. Dan A. Iancu & Marek Petrik & Dharmashankar Subramanian, 2015. "Tight Approximations of Dynamic Risk Measures," Mathematics of Operations Research, INFORMS, vol. 40(3), pages 655-682, March.
  6. Boonen, Tim J. & Guillen, Montserrat & Santolino, Miguel, 2019. "Forecasting compositional risk allocations," Insurance: Mathematics and Economics, Elsevier, vol. 84(C), pages 79-86.
  7. Silvana M. Pesenti & Sebastian Jaimungal & Yuri F. Saporito & Rodrigo S. Targino, 2023. "Risk Budgeting Allocation for Dynamic Risk Measures," Papers 2305.11319, arXiv.org, revised Oct 2024.
  8. Dominique Guegan & Bertrand K Hassani, 2014. "Distortion Risk Measures or the Transformation of Unimodal Distributions into Multimodal Functions," Documents de travail du Centre d'Economie de la Sorbonne 14008, Université Panthéon-Sorbonne (Paris 1), Centre d'Economie de la Sorbonne.
  9. Psarrakos, Georgios & Toomaj, Abdolsaeed & Vliora, Polyxeni, 2024. "A family of variability measures based on the cumulative residual entropy and distortion functions," Insurance: Mathematics and Economics, Elsevier, vol. 114(C), pages 212-222.
  10. Elisa Mastrogiacomo & Emanuela Rosazza Gianin, 2024. "Dynamic capital allocation rules via BSDEs: an axiomatic approach," Annals of Operations Research, Springer, vol. 336(1), pages 749-772, May.
  11. van Gulick, Gerwald & De Waegenaere, Anja & Norde, Henk, 2012. "Excess based allocation of risk capital," Insurance: Mathematics and Economics, Elsevier, vol. 50(1), pages 26-42.
  12. Pesenti, Silvana M. & Tsanakas, Andreas & Millossovich, Pietro, 2018. "Euler allocations in the presence of non-linear reinsurance: Comment on Major (2018)," Insurance: Mathematics and Economics, Elsevier, vol. 83(C), pages 29-31.
  13. Cheung, Ka Chun & Phillip Yam, Sheung Chi & Yuen, Fei Lung & Zhang, Yiying, 2020. "Concave distortion risk minimizing reinsurance design under adverse selection," Insurance: Mathematics and Economics, Elsevier, vol. 91(C), pages 155-165.
  14. Bauer, Daniel & Kamiya, Shinichi & Ping, Xiaohu & Zanjani, George, 2019. "Dynamic capital allocation with irreversible investments," Insurance: Mathematics and Economics, Elsevier, vol. 85(C), pages 138-152.
  15. Roorda, Berend & Schumacher, J.M., 2007. "Time consistency conditions for acceptability measures, with an application to Tail Value at Risk," Insurance: Mathematics and Economics, Elsevier, vol. 40(2), pages 209-230, March.
  16. van Gulick, G. & De Waegenaere, A.M.B. & Norde, H.W., 2010. "Excess Based Allocation of Risk Capital," Other publications TiSEM f9231521-fea7-4524-8fea-8, Tilburg University, School of Economics and Management.
  17. Boonen, Tim J. & De Waegenaere, Anja & Norde, Henk, 2020. "A generalization of the Aumann–Shapley value for risk capital allocation problems," European Journal of Operational Research, Elsevier, vol. 282(1), pages 277-287.
  18. Boonen, T.J. & De Waegenaere, A.M.B. & Norde, H.W., 2012. "A Generalization of the Aumann-Shapley Value for Risk Capital Allocation Problems," Other publications TiSEM 2c502ef8-76f0-47f5-ab45-1, Tilburg University, School of Economics and Management.
  19. Alexandru V. Asimit & Raluca Vernic & Riċardas Zitikis, 2013. "Evaluating Risk Measures and Capital Allocations Based on Multi-Losses Driven by a Heavy-Tailed Background Risk: The Multivariate Pareto-II Model," Risks, MDPI, vol. 1(1), pages 1-20, March.
  20. Jilber Urbina & Miguel Santolino & Montserrat Guillen, 2021. "Covariance Principle for Capital Allocation: A Time-Varying Approach," Mathematics, MDPI, vol. 9(16), pages 1-13, August.
  21. Dominique Guegan & Bertrand Hassani, 2014. "Distortion Risk Measures or the Transformation of Unimodal Distributions into Multimodal Functions," Post-Print halshs-00969242, HAL.
  22. Hirbod Assa & Manuel Morales & Hassan Omidi Firouzi, 2016. "On the Capital Allocation Problem for a New Coherent Risk Measure in Collective Risk Theory," Risks, MDPI, vol. 4(3), pages 1-20, August.
  23. Major, John A., 2018. "Distortion measures and homogeneous financial derivatives," Insurance: Mathematics and Economics, Elsevier, vol. 79(C), pages 82-91.
  24. Riccardo Colini-Baldeschi & Marco Scarsini & Stefano Vaccari, 2018. "Variance Allocation and Shapley Value," Methodology and Computing in Applied Probability, Springer, vol. 20(3), pages 919-933, September.
  25. Zang, Xin & Jiang, Fan & Xia, Chenxi & Yang, Jingping, 2024. "Random distortion risk measures," Insurance: Mathematics and Economics, Elsevier, vol. 116(C), pages 51-73.
  26. Lin, Feng & Peng, Liang & Xie, Jiehua & Yang, Jingping, 2018. "Stochastic distortion and its transformed copula," Insurance: Mathematics and Economics, Elsevier, vol. 79(C), pages 148-166.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.