IDEAS home Printed from https://ideas.repec.org/r/eee/energy/v97y2016icp506-516.html

Estimating building energy consumption using extreme learning machine method

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Ferrara, Maria & Della Santa, Francesco & Bilardo, Matteo & De Gregorio, Alessandro & Mastropietro, Antonio & Fugacci, Ulderico & Vaccarino, Francesco & Fabrizio, Enrico, 2021. "Design optimization of renewable energy systems for NZEBs based on deep residual learning," Renewable Energy, Elsevier, vol. 176(C), pages 590-605.
  2. Geng, Zhiqiang & Li, Hongda & Zhu, Qunxiong & Han, Yongming, 2018. "Production prediction and energy-saving model based on Extreme Learning Machine integrated ISM-AHP: Application in complex chemical processes," Energy, Elsevier, vol. 160(C), pages 898-909.
  3. Zhang, Xu & Sun, Yongjun & Gao, Dian-ce & Zou, Wenke & Fu, Jianping & Ma, Xiaowen, 2022. "Similarity-based grouping method for evaluation and optimization of dataset structure in machine-learning based short-term building cooling load prediction without measurable occupancy information," Applied Energy, Elsevier, vol. 327(C).
  4. Fu, Xueqian & Zhang, Xiurong, 2019. "Estimation of building energy consumption using weather information derived from photovoltaic power plants," Renewable Energy, Elsevier, vol. 130(C), pages 130-138.
  5. shateri, Amirali & jalili, Bahram & saffar, Saber & Jalili, Payam & Domiri Ganji, Davood, 2024. "Numerical study of the effect of ultrasound waves on the turbulent flow with chemical reaction," Energy, Elsevier, vol. 289(C).
  6. Manfren, Massimiliano & Nastasi, Benedetto, 2023. "Interpretable data-driven building load profiles modelling for Measurement and Verification 2.0," Energy, Elsevier, vol. 283(C).
  7. Abhinandana Boodi & Karim Beddiar & Malek Benamour & Yassine Amirat & Mohamed Benbouzid, 2018. "Intelligent Systems for Building Energy and Occupant Comfort Optimization: A State of the Art Review and Recommendations," Energies, MDPI, vol. 11(10), pages 1-26, September.
  8. Li, Xiaoma & Zhou, Yuyu & Yu, Sha & Jia, Gensuo & Li, Huidong & Li, Wenliang, 2019. "Urban heat island impacts on building energy consumption: A review of approaches and findings," Energy, Elsevier, vol. 174(C), pages 407-419.
  9. Wei, Yixuan & Xia, Liang & Pan, Song & Wu, Jinshun & Zhang, Xingxing & Han, Mengjie & Zhang, Weiya & Xie, Jingchao & Li, Qingping, 2019. "Prediction of occupancy level and energy consumption in office building using blind system identification and neural networks," Applied Energy, Elsevier, vol. 240(C), pages 276-294.
  10. Amal A. Al-Shargabi & Abdulbasit Almhafdy & Dina M. Ibrahim & Manal Alghieth & Francisco Chiclana, 2021. "Tuning Deep Neural Networks for Predicting Energy Consumption in Arid Climate Based on Buildings Characteristics," Sustainability, MDPI, vol. 13(22), pages 1-20, November.
  11. Zhong, Hai & Wang, Jiajun & Jia, Hongjie & Mu, Yunfei & Lv, Shilei, 2019. "Vector field-based support vector regression for building energy consumption prediction," Applied Energy, Elsevier, vol. 242(C), pages 403-414.
  12. Ascione, Fabrizio & Bianco, Nicola & De Stasio, Claudio & Mauro, Gerardo Maria & Vanoli, Giuseppe Peter, 2017. "Artificial neural networks to predict energy performance and retrofit scenarios for any member of a building category: A novel approach," Energy, Elsevier, vol. 118(C), pages 999-1017.
  13. Sun, Ying & Haghighat, Fariborz & Fung, Benjamin C.M., 2022. "Trade-off between accuracy and fairness of data-driven building and indoor environment models: A comparative study of pre-processing methods," Energy, Elsevier, vol. 239(PD).
  14. Venkatraj, V. & Dixit, M.K., 2022. "Challenges in implementing data-driven approaches for building life cycle energy assessment: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 160(C).
  15. Liu, Che & Sun, Bo & Zhang, Chenghui & Li, Fan, 2020. "A hybrid prediction model for residential electricity consumption using holt-winters and extreme learning machine," Applied Energy, Elsevier, vol. 275(C).
  16. Ahmed Abdelaziz & Vitor Santos & Miguel Sales Dias, 2021. "Machine Learning Techniques in the Energy Consumption of Buildings: A Systematic Literature Review Using Text Mining and Bibliometric Analysis," Energies, MDPI, vol. 14(22), pages 1-31, November.
  17. Wang, Zeyu & Srinivasan, Ravi S., 2017. "A review of artificial intelligence based building energy use prediction: Contrasting the capabilities of single and ensemble prediction models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 796-808.
  18. Chen, Xi & Yang, Hongxing & Sun, Ke, 2016. "A holistic passive design approach to optimize indoor environmental quality of a typical residential building in Hong Kong," Energy, Elsevier, vol. 113(C), pages 267-281.
  19. Kamel, Ehsan & Sheikh, Shaya & Huang, Xueqing, 2020. "Data-driven predictive models for residential building energy use based on the segregation of heating and cooling days," Energy, Elsevier, vol. 206(C).
  20. Wang, Zeyu & Liu, Jian & Zhang, Yuanxin & Yuan, Hongping & Zhang, Ruixue & Srinivasan, Ravi S., 2021. "Practical issues in implementing machine-learning models for building energy efficiency: Moving beyond obstacles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
  21. Li, Xinyi & Yao, Runming, 2020. "A machine-learning-based approach to predict residential annual space heating and cooling loads considering occupant behaviour," Energy, Elsevier, vol. 212(C).
  22. Nikolaos Kampelis & Georgios I. Papayiannis & Dionysia Kolokotsa & Georgios N. Galanis & Daniela Isidori & Cristina Cristalli & Athanasios N. Yannacopoulos, 2020. "An Integrated Energy Simulation Model for Buildings," Energies, MDPI, vol. 13(5), pages 1-23, March.
  23. Niemierko, Rochus & Töppel, Jannick & Tränkler, Timm, 2019. "A D-vine copula quantile regression approach for the prediction of residential heating energy consumption based on historical data," Applied Energy, Elsevier, vol. 233, pages 691-708.
  24. Masood, Zahid & Khan, Shahroz & Qian, Li, 2021. "Machine learning-based surrogate model for accelerating simulation-driven optimisation of hydropower Kaplan turbine," Renewable Energy, Elsevier, vol. 173(C), pages 827-848.
  25. Wang, Xia & Ding, Chao & Cai, Weiguang & Luo, Lizi & Chen, Mingman, 2021. "Identifying household cooling savings potential in the hot summer and cold winter climate zone in China: A stochastic demand frontier approach," Energy, Elsevier, vol. 237(C).
  26. Naji, Sareh & Aye, Lu & Noguchi, Masa, 2021. "Multi-objective optimisations of envelope components for a prefabricated house in six climate zones," Applied Energy, Elsevier, vol. 282(PA).
  27. Szodrai, Ferenc & Lakatos, Ákos & Kalmár, Ferenc, 2016. "Analysis of the change of the specific heat loss coefficient of buildings resulted by the variation of the geometry and the moisture load," Energy, Elsevier, vol. 115(P1), pages 820-829.
  28. Chengdong Li & Zixiang Ding & Dongbin Zhao & Jianqiang Yi & Guiqing Zhang, 2017. "Building Energy Consumption Prediction: An Extreme Deep Learning Approach," Energies, MDPI, vol. 10(10), pages 1-20, October.
  29. Azadeh Sadeghi & Roohollah Younes Sinaki & William A. Young & Gary R. Weckman, 2020. "An Intelligent Model to Predict Energy Performances of Residential Buildings Based on Deep Neural Networks," Energies, MDPI, vol. 13(3), pages 1-23, January.
  30. Mawson, Victoria Jayne & Hughes, Ben Richard, 2021. "Optimisation of HVAC control and manufacturing schedules for the reduction of peak energy demand in the manufacturing sector," Energy, Elsevier, vol. 227(C).
  31. Juan D. Velásquez & Lorena Cadavid & Carlos J. Franco, 2023. "Intelligence Techniques in Sustainable Energy: Analysis of a Decade of Advances," Energies, MDPI, vol. 16(19), pages 1-45, October.
  32. Tran, Duc-Hoc & Luong, Duc-Long & Chou, Jui-Sheng, 2020. "Nature-inspired metaheuristic ensemble model for forecasting energy consumption in residential buildings," Energy, Elsevier, vol. 191(C).
  33. Xu, Bin & Cheng, Yuan-xia & Chen, Xing-ni & Xie, Xing & Ji, Jie & Jiao, Dong-sheng, 2023. "Error correction method for heat flux and a new algorithm employed in inverting wall thermal resistance using an artificial neural network: Based on IN-SITU heat flux measurements," Energy, Elsevier, vol. 282(C).
  34. Yeong Huei Lee & Mugahed Amran & Yee Yong Lee & Ahmad Beng Hong Kueh & Siaw Fui Kiew & Roman Fediuk & Nikolai Vatin & Yuriy Vasilev, 2021. "Thermal Behavior and Energy Efficiency of Modified Concretes in the Tropical Climate: A Systemic Review," Sustainability, MDPI, vol. 13(21), pages 1-24, October.
  35. Ramya Kuppusamy & Srete Nikolovski & Yuvaraja Teekaraman, 2023. "Review of Machine Learning Techniques for Power Quality Performance Evaluation in Grid-Connected Systems," Sustainability, MDPI, vol. 15(20), pages 1-29, October.
  36. Chen, Xi & Yang, Hongxing, 2017. "A multi-stage optimization of passively designed high-rise residential buildings in multiple building operation scenarios," Applied Energy, Elsevier, vol. 206(C), pages 541-557.
  37. Shangfu Wei & Xiaoqing Bai, 2022. "Multi-Step Short-Term Building Energy Consumption Forecasting Based on Singular Spectrum Analysis and Hybrid Neural Network," Energies, MDPI, vol. 15(5), pages 1-21, February.
  38. Rongjiang Ma & Shen Yang & Xianlin Wang & Xi-Cheng Wang & Ming Shan & Nanyang Yu & Xudong Yang, 2020. "Systematic Method for the Energy-Saving Potential Calculation of Air-Conditioning Systems via Data Mining. Part I: Methodology," Energies, MDPI, vol. 14(1), pages 1-15, December.
  39. Bui, Dac-Khuong & Nguyen, Tuan Ngoc & Ngo, Tuan Duc & Nguyen-Xuan, H., 2020. "An artificial neural network (ANN) expert system enhanced with the electromagnetism-based firefly algorithm (EFA) for predicting the energy consumption in buildings," Energy, Elsevier, vol. 190(C).
  40. Wang, Delu & Tian, Cuicui & Mao, Jinqi & Chen, Fan, 2023. "Forecasting coal demand in key coal consuming industries based on the data-characteristic-driven decomposition ensemble model," Energy, Elsevier, vol. 282(C).
  41. Bordbari, Mohammad Javad & Seifi, Ali Reza & Rastegar, Mohammad, 2018. "Probabilistic energy consumption analysis in buildings using point estimate method," Energy, Elsevier, vol. 142(C), pages 716-722.
  42. Zou, Rongwei & Yang, Qiliang & Xing, Jianchun & Zhou, Qizhen & Xie, Liqiang & Chen, Wenjie, 2024. "Predicting the electric power consumption of office buildings based on dynamic and static hybrid data analysis," Energy, Elsevier, vol. 290(C).
  43. Li, Wenqiang & Gong, Guangcai & Fan, Houhua & Peng, Pei & Chun, Liang, 2020. "Meta-learning strategy based on user preferences and a machine recommendation system for real-time cooling load and COP forecasting," Applied Energy, Elsevier, vol. 270(C).
  44. Yan Cao & Towhid Pourrostam & Yousef Zandi & Nebojša Denić & Bogdan Ćirković & Alireza Sadighi Agdas & Abdellatif Selmi & Vuk Vujović & Kittisak Jermsittiparsert & Momir Milic, 2021. "RETRACTED ARTICLE: Analyzing the energy performance of buildings by neuro-fuzzy logic based on different factors," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(12), pages 17349-17373, December.
  45. Khamma, Thulasi Ram & Zhang, Yuming & Guerrier, Stéphane & Boubekri, Mohamed, 2020. "Generalized additive models: An efficient method for short-term energy prediction in office buildings," Energy, Elsevier, vol. 213(C).
  46. Chengdong Li & Zixiang Ding & Jianqiang Yi & Yisheng Lv & Guiqing Zhang, 2018. "Deep Belief Network Based Hybrid Model for Building Energy Consumption Prediction," Energies, MDPI, vol. 11(1), pages 1-26, January.
  47. Fateme Dinmohammadi & Yuxuan Han & Mahmood Shafiee, 2023. "Predicting Energy Consumption in Residential Buildings Using Advanced Machine Learning Algorithms," Energies, MDPI, vol. 16(9), pages 1-23, April.
  48. Jiang, Nanhua & Zhang, Jiawei & Jiang, Weiran & Ren, Yao & Lin, Jing & Khoo, Edwin & Song, Ziyou, 2024. "Driving behavior-guided battery health monitoring for electric vehicles using extreme learning machine," Applied Energy, Elsevier, vol. 364(C).
  49. Chen, Xi & Yang, Hongxing & Sun, Ke, 2017. "Developing a meta-model for sensitivity analyses and prediction of building performance for passively designed high-rise residential buildings," Applied Energy, Elsevier, vol. 194(C), pages 422-439.
  50. Amasyali, Kadir & El-Gohary, Nora M., 2018. "A review of data-driven building energy consumption prediction studies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 1192-1205.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.