IDEAS home Printed from https://ideas.repec.org/r/eee/energy/v45y2012i1p960-974.html
   My bibliography  Save this item

District heating (DH) network design and operation toward a system-wide methodology for optimizing renewable energy solutions (SMORES) in Canada: A case study

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Lorenzen, Peter & Alvarez-Bel, Carlos, 2022. "Variable cost evaluation of heating plants in district heating systems considering the temperature impact," Applied Energy, Elsevier, vol. 305(C).
  2. Sánchez-García, Luis & Averfalk, Helge & Möllerström, Erik & Persson, Urban, 2023. "Understanding effective width for district heating," Energy, Elsevier, vol. 277(C).
  3. Li, Ruonan & Mhaskar, Prashant & Mahalec, Vladimir, 2021. "Integration of energy systems for buildings and light industrial plants," Energy, Elsevier, vol. 233(C).
  4. Aste, Niccolò & Caputo, Paola & Del Pero, Claudio & Ferla, Giulio & Huerto-Cardenas, Harold Enrique & Leonforte, Fabrizio & Miglioli, Alessandro, 2020. "A renewable energy scenario for a new low carbon settlement in northern Italy: Biomass district heating coupled with heat pump and solar photovoltaic system," Energy, Elsevier, vol. 206(C).
  5. Pirouti, Marouf & Bagdanavicius, Audrius & Ekanayake, Janaka & Wu, Jianzhong & Jenkins, Nick, 2013. "Energy consumption and economic analyses of a district heating network," Energy, Elsevier, vol. 57(C), pages 149-159.
  6. Averfalk, Helge & Werner, Sven, 2018. "Novel low temperature heat distribution technology," Energy, Elsevier, vol. 145(C), pages 526-539.
  7. Lizana, Jesús & Ortiz, Carlos & Soltero, Víctor M. & Chacartegui, Ricardo, 2017. "District heating systems based on low-carbon energy technologies in Mediterranean areas," Energy, Elsevier, vol. 120(C), pages 397-416.
  8. Maria Jebamalai, Joseph & Marlein, Kurt & Laverge, Jelle & Vandevelde, Lieven & van den Broek, Martijn, 2019. "An automated GIS-based planning and design tool for district heating: Scenarios for a Dutch city," Energy, Elsevier, vol. 183(C), pages 487-496.
  9. Caputo, Paola & Ferla, Giulio & Ferrari, Simone, 2019. "Evaluation of environmental and energy effects of biomass district heating by a wide survey based on operational conditions in Italy," Energy, Elsevier, vol. 174(C), pages 1210-1218.
  10. Wang, Weilong & Li, Hailong & Guo, Shaopeng & He, Shiquan & Ding, Jing & Yan, Jinyue & Yang, Jianping, 2015. "Numerical simulation study on discharging process of the direct-contact phase change energy storage system," Applied Energy, Elsevier, vol. 150(C), pages 61-68.
  11. Letellier-Duchesne, Samuel & Nagpal, Shreshth & Kummert, Michaël & Reinhart, Christoph, 2018. "Balancing demand and supply: Linking neighborhood-level building load calculations with detailed district energy network analysis models," Energy, Elsevier, vol. 150(C), pages 913-925.
  12. Colmenar-Santos, Antonio & Rosales-Asensio, Enrique & Borge-Diez, David & Collado-Fernández, Eduardo, 2016. "Evaluation of the cost of using power plant reject heat in low-temperature district heating and cooling networks," Applied Energy, Elsevier, vol. 162(C), pages 892-907.
  13. Brange, Lisa & Lauenburg, Patrick & Sernhed, Kerstin & Thern, Marcus, 2017. "Bottlenecks in district heating networks and how to eliminate them – A simulation and cost study," Energy, Elsevier, vol. 137(C), pages 607-616.
  14. Leurent, Martin & Da Costa, Pascal & Jasserand, Frédéric & Rämä, Miika & Persson, Urban, 2018. "Cost and climate savings through nuclear district heating in a French urban area," Energy Policy, Elsevier, vol. 115(C), pages 616-630.
  15. Baldvinsson, Ivar & Nakata, Toshihiko, 2014. "A comparative exergy and exergoeconomic analysis of a residential heat supply system paradigm of Japan and local source based district heating system using SPECO (specific exergy cost) method," Energy, Elsevier, vol. 74(C), pages 537-554.
  16. Leurent, Martin & Da Costa, Pascal & Rämä, Miika & Persson, Urban & Jasserand, Frédéric, 2018. "Cost-benefit analysis of district heating systems using heat from nuclear plants in seven European countries," Energy, Elsevier, vol. 149(C), pages 454-472.
  17. Bertrand, Alexandre & Mastrucci, Alessio & Schüler, Nils & Aggoune, Riad & Maréchal, François, 2017. "Characterisation of domestic hot water end-uses for integrated urban thermal energy assessment and optimisation," Applied Energy, Elsevier, vol. 186(P2), pages 152-166.
  18. Best, Robert E. & Rezazadeh Kalehbasti, P. & Lepech, Michael D., 2020. "A novel approach to district heating and cooling network design based on life cycle cost optimization," Energy, Elsevier, vol. 194(C).
  19. Tunzi, Michele & Østergaard, Dorte Skaarup & Svendsen, Svend & Boukhanouf, Rabah & Cooper, Edward, 2016. "Method to investigate and plan the application of low temperature district heating to existing hydraulic radiator systems in existing buildings," Energy, Elsevier, vol. 113(C), pages 413-421.
  20. Borna Doračić & Tomislav Novosel & Tomislav Pukšec & Neven Duić, 2018. "Evaluation of Excess Heat Utilization in District Heating Systems by Implementing Levelized Cost of Excess Heat," Energies, MDPI, vol. 11(3), pages 1-14, March.
  21. Wendel, Frank & Blesl, Markus & Brodecki, Lukasz & Hufendiek, Kai, 2022. "Expansion or decommission? – Transformation of existing district heating networks by reducing temperature levels in a cost-optimum network design," Applied Energy, Elsevier, vol. 310(C).
  22. Baldvinsson, Ivar & Nakata, Toshihiko, 2016. "A feasibility and performance assessment of a low temperature district heating system – A North Japanese case study," Energy, Elsevier, vol. 95(C), pages 155-174.
  23. Dénarié, A. & Aprile, M. & Motta, M., 2019. "Heat transmission over long pipes: New model for fast and accurate district heating simulations," Energy, Elsevier, vol. 166(C), pages 267-276.
  24. Nord, Natasa & Løve Nielsen, Elise Kristine & Kauko, Hanne & Tereshchenko, Tymofii, 2018. "Challenges and potentials for low-temperature district heating implementation in Norway," Energy, Elsevier, vol. 151(C), pages 889-902.
  25. Čož, T. Duh & Kitanovski, A. & Poredoš, A., 2017. "Exergoeconomic optimization of a district cooling network," Energy, Elsevier, vol. 135(C), pages 342-351.
  26. Dermentzis, Georgios & Ochs, Fabian & Thuer, Alexander & Streicher, Wolfgang, 2021. "Supporting decision-making for heating and distribution systems in a new residential district - An Austrian case study," Energy, Elsevier, vol. 224(C).
  27. Jalil-Vega, Francisca & Hawkes, Adam D., 2018. "The effect of spatial resolution on outcomes from energy systems modelling of heat decarbonisation," Energy, Elsevier, vol. 155(C), pages 339-350.
  28. Gils, Hans Christian & Cofala, Janusz & Wagner, Fabian & Schöpp, Wolfgang, 2013. "GIS-based assessment of the district heating potential in the USA," Energy, Elsevier, vol. 58(C), pages 318-329.
  29. Yousefzadeh, Moslem & Lenzen, Manfred, 2019. "Performance of concentrating solar power plants in a whole-of-grid context," Renewable and Sustainable Energy Reviews, Elsevier, vol. 114(C), pages 1-1.
  30. Ziemele, Jelena & Pakere, Ieva & Blumberga, Dagnija, 2016. "The future competitiveness of the non-Emissions Trading Scheme district heating systems in the Baltic States," Applied Energy, Elsevier, vol. 162(C), pages 1579-1585.
  31. Min Gyung Yu & Yujin Nam, 2016. "Feasibility Assessment of Using Power Plant Waste Heat in Large Scale Horticulture Facility Energy Supply Systems," Energies, MDPI, vol. 9(2), pages 1-16, February.
  32. Oh, Se-Young & Binns, Michael & Yeo, Yeong-Koo & Kim, Jin-Kuk, 2014. "Improving energy efficiency for local energy systems," Applied Energy, Elsevier, vol. 131(C), pages 26-39.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.