IDEAS home Printed from https://ideas.repec.org/r/eee/appene/v95y2012icp300-304.html
   My bibliography  Save this item

Introducing District Heating in a Norwegian town – Potential for reduced Local and Global Emissions

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Hagos, Dejene Assefa & Gebremedhin, Alemayehu & Zethraeus, Björn, 2014. "Towards a flexible energy system – A case study for Inland Norway," Applied Energy, Elsevier, vol. 130(C), pages 41-50.
  2. Ma, Weiwu & Xue, Xinpei & Liu, Gang, 2018. "Techno-economic evaluation for hybrid renewable energy system: Application and merits," Energy, Elsevier, vol. 159(C), pages 385-409.
  3. Zheng, J.H. & Wu, Q.H. & Jing, Z.X., 2017. "Coordinated scheduling strategy to optimize conflicting benefits for daily operation of integrated electricity and gas networks," Applied Energy, Elsevier, vol. 192(C), pages 370-381.
  4. Persson, Urban & Wiechers, Eva & Möller, Bernd & Werner, Sven, 2019. "Heat Roadmap Europe: Heat distribution costs," Energy, Elsevier, vol. 176(C), pages 604-622.
  5. Sandberg, Eli & Sneum, Daniel Møller & Trømborg, Erik, 2018. "Framework conditions for Nordic district heating - Similarities and differences, and why Norway sticks out," Energy, Elsevier, vol. 149(C), pages 105-119.
  6. Kiraly, Annamaria & Pahor, Bojan & Kravanja, Zdravko, 2013. "Achieving energy self-sufficiency by integrating renewables into companies' supply networks," Energy, Elsevier, vol. 55(C), pages 46-57.
  7. Jiang, X.S. & Jing, Z.X. & Li, Y.Z. & Wu, Q.H. & Tang, W.H., 2014. "Modelling and operation optimization of an integrated energy based direct district water-heating system," Energy, Elsevier, vol. 64(C), pages 375-388.
  8. Robert Cichowicz & Maciej Dobrzański, 2021. "Modeling Pollutant Emissions: Influence of Two Heat and Power Plants on Urban Air Quality," Energies, MDPI, vol. 14(17), pages 1-18, August.
  9. Tommy Rosén & Louise Ödlund, 2019. "System Perspective on Biogas Use for Transport and Electricity Production," Energies, MDPI, vol. 12(21), pages 1-13, October.
  10. Kikuchi, Yasunori & Kimura, Seiichiro & Okamoto, Yoshitaka & Koyama, Michihisa, 2014. "A scenario analysis of future energy systems based on an energy flow model represented as functionals of technology options," Applied Energy, Elsevier, vol. 132(C), pages 586-601.
  11. Cui, Yunfei & Geng, Zhiqiang & Zhu, Qunxiong & Han, Yongming, 2017. "Review: Multi-objective optimization methods and application in energy saving," Energy, Elsevier, vol. 125(C), pages 681-704.
  12. Shimizu, Teruyuki & Kikuchi, Yasunori & Sugiyama, Hirokazu & Hirao, Masahiko, 2015. "Design method for a local energy cooperative network using distributed energy technologies," Applied Energy, Elsevier, vol. 154(C), pages 781-793.
  13. Lauma Balode & Beate Zlaugotne & Armands Gravelsins & Oskars Svedovs & Ieva Pakere & Vladimirs Kirsanovs & Dagnija Blumberga, 2023. "Carbon Neutrality in Municipalities: Balancing Individual and District Heating Renewable Energy Solutions," Sustainability, MDPI, vol. 15(10), pages 1-19, May.
  14. Tommy Rosén & Louise Ödlund, 2019. "Active Management of Heat Customers Towards Lower District Heating Return Water Temperature," Energies, MDPI, vol. 12(10), pages 1-20, May.
  15. Lake, Andrew & Rezaie, Behanz & Beyerlein, Steven, 2017. "Review of district heating and cooling systems for a sustainable future," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 417-425.
  16. Unternährer, Jérémy & Moret, Stefano & Joost, Stéphane & Maréchal, François, 2017. "Spatial clustering for district heating integration in urban energy systems: Application to geothermal energy," Applied Energy, Elsevier, vol. 190(C), pages 749-763.
  17. Hyo-Jin Kim & Seul-Ye Lim & Seung-Hoon Yoo, 2017. "The Convenience Benefits of the District Heating System over Individual Heating Systems in Korean Households," Sustainability, MDPI, vol. 9(8), pages 1-12, August.
  18. Howard, B. & Waite, M. & Modi, V., 2017. "Current and near-term GHG emissions factors from electricity production for New York State and New York City," Applied Energy, Elsevier, vol. 187(C), pages 255-271.
  19. Jing, Z.X. & Jiang, X.S. & Wu, Q.H. & Tang, W.H. & Hua, B., 2014. "Modelling and optimal operation of a small-scale integrated energy based district heating and cooling system," Energy, Elsevier, vol. 73(C), pages 399-415.
  20. Capuder, Tomislav & Mancarella, Pierluigi, 2014. "Techno-economic and environmental modelling and optimization of flexible distributed multi-generation options," Energy, Elsevier, vol. 71(C), pages 516-533.
  21. Danica Djurić Ilić, 2020. "Classification of Measures for Dealing with District Heating Load Variations—A Systematic Review," Energies, MDPI, vol. 14(1), pages 1-27, December.
  22. Ju-Hee Kim & Younggew Kim & Seung-Hoon Yoo, 2021. "Using a choice experiment to explore the public willingness to pay for the impacts of improving energy efficiency of an apartment," Quality & Quantity: International Journal of Methodology, Springer, vol. 55(5), pages 1775-1793, October.
  23. Lidberg, T. & Olofsson, T. & Trygg, L., 2016. "System impact of energy efficient building refurbishment within a district heated region," Energy, Elsevier, vol. 106(C), pages 45-53.
  24. Zheng, J.H. & Chen, J.J. & Wu, Q.H. & Jing, Z.X., 2015. "Multi-objective optimization and decision making for power dispatch of a large-scale integrated energy system with distributed DHCs embedded," Applied Energy, Elsevier, vol. 154(C), pages 369-379.
  25. Rodríguez, R. & Bello, V.G. & Díaz-Aguado, M.B., 2017. "Application of eco-efficiency in a coal-burning power plant benefitting both the environment and citizens: Design of a ‘city water heating’ system," Applied Energy, Elsevier, vol. 189(C), pages 789-799.
  26. Du, Mingxi & Wang, Xiaoge & Peng, Changhui & Shan, Yuli & Chen, Huai & Wang, Meng & Zhu, Qiuan, 2018. "Quantification and scenario analysis of CO2 emissions from the central heating supply system in China from 2006 to 2025," Applied Energy, Elsevier, vol. 225(C), pages 869-875.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.