IDEAS home Printed from https://ideas.repec.org/r/eee/appene/v86y2009i6p793-804.html
   My bibliography  Save this item

A liquefied energy chain for transport and utilization of natural gas for power production with CO2 capture and storage - Part 2: The offshore and the onshore processes

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Sayyaadi, Hoseyn & Babaelahi, M., 2011. "Multi-objective optimization of a joule cycle for re-liquefaction of the Liquefied Natural Gas," Applied Energy, Elsevier, vol. 88(9), pages 3012-3021.
  2. García, Ramón Ferreiro & Carril, Jose Carbia & Gomez, Javier Romero & Gomez, Manuel Romero, 2016. "Combined cascaded Rankine and direct expander based power units using LNG (liquefied natural gas) cold as heat sink in LNG regasification," Energy, Elsevier, vol. 105(C), pages 16-24.
  3. Aspelund, Audun & Gundersen, Truls, 2009. "A liquefied energy chain for transport and utilization of natural gas for power production with CO2 capture and storage - Part 1," Applied Energy, Elsevier, vol. 86(6), pages 781-792, June.
  4. Khan, Mohd Shariq & Lee, Sanggyu & Rangaiah, G.P. & Lee, Moonyong, 2013. "Knowledge based decision making method for the selection of mixed refrigerant systems for energy efficient LNG processes," Applied Energy, Elsevier, vol. 111(C), pages 1018-1031.
  5. Lee, Inkyu & Park, Jinwoo & You, Fengqi & Moon, Il, 2019. "A novel cryogenic energy storage system with LNG direct expansion regasification: Design, energy optimization, and exergy analysis," Energy, Elsevier, vol. 173(C), pages 691-705.
  6. Chen, Wei-Hsin & Hou, Yu-Lin & Hung, Chen-I, 2011. "A theoretical analysis of the capture of greenhouse gases by single water droplet at atmospheric and elevated pressures," Applied Energy, Elsevier, vol. 88(12), pages 5120-5130.
  7. Baccanelli, Margaret & Langé, Stefano & Rocco, Matteo V. & Pellegrini, Laura A. & Colombo, Emanuela, 2016. "Low temperature techniques for natural gas purification and LNG production: An energy and exergy analysis," Applied Energy, Elsevier, vol. 180(C), pages 546-559.
  8. Querol, E. & Gonzalez-Regueral, B. & García-Torrent, J. & Ramos, Alberto, 2011. "Available power generation cycles to be coupled with the liquid natural gas (LNG) vaporization process in a Spanish LNG terminal," Applied Energy, Elsevier, vol. 88(7), pages 2382-2390, July.
  9. Obara, Shin'ya & Kikuchi, Yoshinobu & Ishikawa, Kyosuke & Kawai, Masahito & Yoshiaki, Kashiwaya, 2015. "Development of a compound energy system for cold region houses using small-scale natural gas cogeneration and a gas hydrate battery," Energy, Elsevier, vol. 85(C), pages 280-295.
  10. Chi, Chung-Cheng & Lin, Ta-Hui, 2013. "Oxy-oil combustion characteristics of an existing furnace," Applied Energy, Elsevier, vol. 102(C), pages 923-930.
  11. Simon Roussanaly & Han Deng & Geir Skaugen & Truls Gundersen, 2021. "At what Pressure Shall CO 2 Be Transported by Ship? An in-Depth Cost Comparison of 7 and 15 Barg Shipping," Energies, MDPI, vol. 14(18), pages 1-27, September.
  12. Wang, B. & Sun, L.S. & Su, S. & Xiang, J. & Hu, S. & Fei, H., 2012. "A kinetic study of NO formation during oxy-fuel combustion of pyridine," Applied Energy, Elsevier, vol. 92(C), pages 361-368.
  13. Li, Xiao-Sen & Yang, Bo & Zhang, Yu & Li, Gang & Duan, Li-Ping & Wang, Yi & Chen, Zhao-Yang & Huang, Ning-Sheng & Wu, Hui-Jie, 2012. "Experimental investigation into gas production from methane hydrate in sediment by depressurization in a novel pilot-scale hydrate simulator," Applied Energy, Elsevier, vol. 93(C), pages 722-732.
  14. Guo, Hao & Tang, Qixiong & Gong, Maoqiong & Cheng, Kuiwei, 2018. "Optimization of a novel liquefaction process based on Joule–Thomson cycle utilizing high-pressure natural gas exergy by genetic algorithm," Energy, Elsevier, vol. 151(C), pages 696-706.
  15. Jiang, Xi, 2011. "A review of physical modelling and numerical simulation of long-term geological storage of CO2," Applied Energy, Elsevier, vol. 88(11), pages 3557-3566.
  16. Aspelund, Audun & Gundersen, Truls, 2009. "A liquefied energy chain for transport and utilization of natural gas for power production with CO2 capture and storage - Part 4: Sensitivity analysis of transport pressures and benchmarking with conv," Applied Energy, Elsevier, vol. 86(6), pages 815-825, June.
  17. Zhao, Guoying & Aziz, Baroz & Hedin, Niklas, 2010. "Carbon dioxide adsorption on mesoporous silica surfaces containing amine-like motifs," Applied Energy, Elsevier, vol. 87(9), pages 2907-2913, September.
  18. Jordán, Pérez Sánchez & Javier Eduardo, Aguillón Martínez & Zdzislaw, Mazur Czerwiec & Alan Martín, Zavala Guzmán & Liborio, Huante Pérez & Jesús Antonio, Flores Zamudio & Mario Román, Díaz Guillén, 2019. "Techno-economic analysis of solar-assisted post-combustion carbon capture to a pilot cogeneration system in Mexico," Energy, Elsevier, vol. 167(C), pages 1107-1119.
  19. Pérez Sánchez, Jordán & Aguillón Martínez, Javier Eduardo & Mazur Czerwiec, Zdzislaw & Zavala Guzmán, Alan Martín, 2019. "Theoretical assessment of integration of CCS in the Mexican electrical sector," Energy, Elsevier, vol. 167(C), pages 828-840.
  20. Obara, Shin’ya & Yamada, Takanobu & Matsumura, Kazuhiro & Takahashi, Shiro & Kawai, Masahito & Rengarajan, Balaji, 2011. "Operational planning of an engine generator using a high pressure working fluid composed of CO2 hydrate," Applied Energy, Elsevier, vol. 88(12), pages 4733-4741.
  21. Karjunen, Hannu & Tynjälä, Tero & Hyppänen, Timo, 2017. "A method for assessing infrastructure for CO2 utilization: A case study of Finland," Applied Energy, Elsevier, vol. 205(C), pages 33-43.
  22. Al Baroudi, Hisham & Awoyomi, Adeola & Patchigolla, Kumar & Jonnalagadda, Kranthi & Anthony, E.J., 2021. "A review of large-scale CO2 shipping and marine emissions management for carbon capture, utilisation and storage," Applied Energy, Elsevier, vol. 287(C).
  23. Kim, Juwon & Seo, Youngkyun & Chang, Daejun, 2016. "Economic evaluation of a new small-scale LNG supply chain using liquid nitrogen for natural-gas liquefaction," Applied Energy, Elsevier, vol. 182(C), pages 154-163.
  24. Wang, Xucen & Li, Min & Cai, Liuxi & Li, Yun, 2020. "Propane and iso-butane pre-cooled mixed refrigerant liquefaction process for small-scale skid-mounted natural gas liquefaction," Applied Energy, Elsevier, vol. 275(C).
  25. Querol, E. & Gonzalez-Regueral, B. & García-Torrent, J. & García-Martínez, M.J., 2010. "Boil off gas (BOG) management in Spanish liquid natural gas (LNG) terminals," Applied Energy, Elsevier, vol. 87(11), pages 3384-3392, November.
  26. Luis Ramirez Camargo & Gabriel Castro & Katharina Gruber & Jessica Jewell & Michael Klingler & Olga Turkovska & Elisabeth Wetterlund & Johannes Schmidt, 2022. "Pathway to a land-neutral expansion of Brazilian renewable fuel production," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
  27. Mokhtar, Marwan & Ali, Muhammad Tauha & Khalilpour, Rajab & Abbas, Ali & Shah, Nilay & Hajaj, Ahmed Al & Armstrong, Peter & Chiesa, Matteo & Sgouridis, Sgouris, 2012. "Solar-assisted Post-combustion Carbon Capture feasibility study," Applied Energy, Elsevier, vol. 92(C), pages 668-676.
  28. Li, Gang & Li, Xiao-Sen & Yang, Bo & Duan, Li-Ping & Huang, Ning-Sheng & Zhang, Yu & Tang, Liang-Guang, 2013. "The use of dual horizontal wells in gas production from hydrate accumulations," Applied Energy, Elsevier, vol. 112(C), pages 1303-1310.
  29. Onishi, Viviani C. & Quirante, Natalia & Ravagnani, Mauro A.S.S. & Caballero, José A., 2018. "Optimal synthesis of work and heat exchangers networks considering unclassified process streams at sub and above-ambient conditions," Applied Energy, Elsevier, vol. 224(C), pages 567-581.
  30. Galanti, Leandro & Franzoni, Alessandro & Traverso, Alberto & Massardo, Aristide F., 2011. "Existing large steam power plant upgraded for hydrogen production," Applied Energy, Elsevier, vol. 88(5), pages 1510-1518, May.
  31. Yan, G. & Gu, Y., 2010. "Effect of parameters on performance of LNG-FPSO offloading system in offshore associated gas fields," Applied Energy, Elsevier, vol. 87(11), pages 3393-3400, November.
  32. Aspelund, Audun & Tveit, Steinar P. & Gundersen, Truls, 2009. "A liquefied energy chain for transport and utilization of natural gas for power production with CO2 capture and storage - Part 3: The combined carrier and onshore storage," Applied Energy, Elsevier, vol. 86(6), pages 805-814, June.
  33. Jiang, Xi & Akber Hassan, Wasim A. & Gluyas, Jon, 2013. "Modelling and monitoring of geological carbon storage: A perspective on cross-validation," Applied Energy, Elsevier, vol. 112(C), pages 784-792.
  34. Lee, Inkyu & Park, Jinwoo & Moon, Il, 2017. "Conceptual design and exergy analysis of combined cryogenic energy storage and LNG regasification processes: Cold and power integration," Energy, Elsevier, vol. 140(P1), pages 106-115.
  35. Zhu, Lei & Fan, Ying, 2011. "A real options–based CCS investment evaluation model: Case study of China’s power generation sector," Applied Energy, Elsevier, vol. 88(12), pages 4320-4333.
  36. Teyber, Reed & Holladay, Jamelyn & Meinhardt, Kerry & Polikarpov, Evgueni & Thomsen, Edwin & Cui, Jun & Rowe, Andrew & Barclay, John, 2019. "Performance investigation of a high-field active magnetic regenerator," Applied Energy, Elsevier, vol. 236(C), pages 426-436.
  37. Morandin, Matteo & Maréchal, François & Mercangöz, Mehmet & Buchter, Florian, 2012. "Conceptual design of a thermo-electrical energy storage system based on heat integration of thermodynamic cycles – Part A: Methodology and base case," Energy, Elsevier, vol. 45(1), pages 375-385.
  38. Ancona, M.A. & Bianchi, M. & Branchini, L. & De Pascale, A. & Melino, F. & Mormile, M. & Palella, M. & Scarponi, L.B., 2018. "Investigation on small-scale low pressure LNG production process," Applied Energy, Elsevier, vol. 227(C), pages 672-685.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.