IDEAS home Printed from https://ideas.repec.org/r/eee/appene/v79y2004i2p159-178.html
   My bibliography  Save this item

Modeling of the space and domestic hot-water heating energy-consumption in the residential sector using neural networks

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Jeong, Kwangbok & Hong, Taehoon & Kim, Jimin & Cho, Kyuman, 2019. "Development of a multi-objective optimization model for determining the optimal CO2 emissions reduction strategies for a multi-family housing complex," Renewable and Sustainable Energy Reviews, Elsevier, vol. 110(C), pages 118-131.
  2. Vogl, Jonathan & Kleinebrahm, Max & Raab, Moritz & McKenna, Russell & Fichtner, Wolf, 2025. "A review of challenges and opportunities in occupant modeling for future residential energy demand," Working Paper Series in Production and Energy 76, Karlsruhe Institute of Technology (KIT), Institute for Industrial Production (IIP).
  3. Guo, J.J. & Wu, J.Y. & Wang, R.Z. & Li, S., 2011. "Experimental research and operation optimization of an air-source heat pump water heater," Applied Energy, Elsevier, vol. 88(11), pages 4128-4138.
  4. McLoughlin, Fintan & Duffy, Aidan & Conlon, Michael, 2015. "A clustering approach to domestic electricity load profile characterisation using smart metering data," Applied Energy, Elsevier, vol. 141(C), pages 190-199.
  5. Szoplik, Jolanta, 2015. "Forecasting of natural gas consumption with artificial neural networks," Energy, Elsevier, vol. 85(C), pages 208-220.
  6. Lee, Jae Yong & Yim, Taesu, 2021. "Energy and flow demand analysis of domestic hot water in an apartment complex using a smart meter," Energy, Elsevier, vol. 229(C).
  7. Ivanko, Dmytro & Sørensen, Åse Lekang & Nord, Natasa, 2021. "Splitting measurements of the total heat demand in a hotel into domestic hot water and space heating heat use," Energy, Elsevier, vol. 219(C).
  8. Al-Ghandoor, A. & Jaber, J.O. & Al-Hinti, I. & Mansour, I.M., 2009. "Residential past and future energy consumption: Potential savings and environmental impact," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(6-7), pages 1262-1274, August.
  9. Meireles, I. & Sousa, V. & Bleys, B. & Poncelet, B., 2022. "Domestic hot water consumption pattern: Relation with total water consumption and air temperature," Renewable and Sustainable Energy Reviews, Elsevier, vol. 157(C).
  10. Mahmoud, Mohamed A. & Alajmi, Ali F., 2010. "Quantitative assessment of energy conservation due to public awareness campaigns using neural networks," Applied Energy, Elsevier, vol. 87(1), pages 220-228, January.
  11. Du, Zhimin & Jin, Xinqiao & Yang, Yunyu, 2009. "Fault diagnosis for temperature, flow rate and pressure sensors in VAV systems using wavelet neural network," Applied Energy, Elsevier, vol. 86(9), pages 1624-1631, September.
  12. Yanxia Li & Chao Wang & Sijie Zhu & Junyan Yang & Shen Wei & Xinkai Zhang & Xing Shi, 2020. "A Comparison of Various Bottom-Up Urban Energy Simulation Methods Using a Case Study in Hangzhou, China," Energies, MDPI, vol. 13(18), pages 1-23, September.
  13. Alberto Gutierrez-Escolar & Ana Castillo-Martinez & Jose M. Gomez-Pulido & Jose-Maria Gutierrez-Martinez & Zlatko Stapic, 2014. "A New System to Estimate and Reduce Electrical Energy Consumption of Domestic Hot Water in Spain," Energies, MDPI, vol. 7(11), pages 1-19, October.
  14. Venkatraj, V. & Dixit, M.K., 2022. "Challenges in implementing data-driven approaches for building life cycle energy assessment: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 160(C).
  15. Mahmoud Abdelkader Bashery Abbass & Mohamed Hamdy, 2021. "A Generic Pipeline for Machine Learning Users in Energy and Buildings Domain," Energies, MDPI, vol. 14(17), pages 1-30, August.
  16. Li, Wenliang & Zhou, Yuyu & Cetin, Kristen & Eom, Jiyong & Wang, Yu & Chen, Gang & Zhang, Xuesong, 2017. "Modeling urban building energy use: A review of modeling approaches and procedures," Energy, Elsevier, vol. 141(C), pages 2445-2457.
  17. Simon Wenninger & Christian Wiethe, 2021. "Benchmarking Energy Quantification Methods to Predict Heating Energy Performance of Residential Buildings in Germany," Business & Information Systems Engineering: The International Journal of WIRTSCHAFTSINFORMATIK, Springer;Gesellschaft für Informatik e.V. (GI), vol. 63(3), pages 223-242, June.
  18. Geyer, Philipp & Singaravel, Sundaravelpandian, 2018. "Component-based machine learning for performance prediction in building design," Applied Energy, Elsevier, vol. 228(C), pages 1439-1453.
  19. Niemierko, Rochus & Töppel, Jannick & Tränkler, Timm, 2019. "A D-vine copula quantile regression approach for the prediction of residential heating energy consumption based on historical data," Applied Energy, Elsevier, vol. 233, pages 691-708.
  20. Tooke, Thoreau Rory & van der Laan, Michael & Coops, Nicholas C., 2014. "Mapping demand for residential building thermal energy services using airborne LiDAR," Applied Energy, Elsevier, vol. 127(C), pages 125-134.
  21. Marcin Zygmunt & Dariusz Gawin, 2021. "Application of Artificial Neural Networks in the Urban Building Energy Modelling of Polish Residential Building Stock," Energies, MDPI, vol. 14(24), pages 1-15, December.
  22. Anna Kipping & Erik Trømborg, 2017. "Modeling Aggregate Hourly Energy Consumption in a Regional Building Stock," Energies, MDPI, vol. 11(1), pages 1-20, December.
  23. Zhao, Hai-xiang & Magoulès, Frédéric, 2012. "A review on the prediction of building energy consumption," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(6), pages 3586-3592.
  24. Huebner, Gesche M. & Hamilton, Ian & Chalabi, Zaid & Shipworth, David & Oreszczyn, Tadj, 2015. "Explaining domestic energy consumption – The comparative contribution of building factors, socio-demographics, behaviours and attitudes," Applied Energy, Elsevier, vol. 159(C), pages 589-600.
  25. Zhou, Xin & Tian, Shuai & An, Jingjing & Yan, Da & Zhang, Lun & Yang, Junyan, 2022. "Modeling occupant behavior’s influence on the energy efficiency of solar domestic hot water systems," Applied Energy, Elsevier, vol. 309(C).
  26. Aydinalp-Koksal, Merih & Ugursal, V. Ismet, 2008. "Comparison of neural network, conditional demand analysis, and engineering approaches for modeling end-use energy consumption in the residential sector," Applied Energy, Elsevier, vol. 85(4), pages 271-296, April.
  27. Kapp, Sean & Choi, Jun-Ki & Hong, Taehoon, 2023. "Predicting industrial building energy consumption with statistical and machine-learning models informed by physical system parameters," Renewable and Sustainable Energy Reviews, Elsevier, vol. 172(C).
  28. Buratti, C. & Barbanera, M. & Palladino, D., 2014. "An original tool for checking energy performance and certification of buildings by means of Artificial Neural Networks," Applied Energy, Elsevier, vol. 120(C), pages 125-132.
  29. Zhang, Wenwen & Robinson, Caleb & Guhathakurta, Subhrajit & Garikapati, Venu M. & Dilkina, Bistra & Brown, Marilyn A. & Pendyala, Ram M., 2018. "Estimating residential energy consumption in metropolitan areas: A microsimulation approach," Energy, Elsevier, vol. 155(C), pages 162-173.
  30. Maltais, Louis-Gabriel & Gosselin, Louis, 2021. "Predictability analysis of domestic hot water consumption with neural networks: From single units to large residential buildings," Energy, Elsevier, vol. 229(C).
  31. Tran, Duc-Hoc & Luong, Duc-Long & Chou, Jui-Sheng, 2020. "Nature-inspired metaheuristic ensemble model for forecasting energy consumption in residential buildings," Energy, Elsevier, vol. 191(C).
  32. Pukšec, Tomislav & Vad Mathiesen, Brian & Duić, Neven, 2013. "Potentials for energy savings and long term energy demand of Croatian households sector," Applied Energy, Elsevier, vol. 101(C), pages 15-25.
  33. Fan, Jing-Li & Liao, Hua & Liang, Qiao-Mei & Tatano, Hirokazu & Liu, Chun-Feng & Wei, Yi-Ming, 2013. "Residential carbon emission evolutions in urban–rural divided China: An end-use and behavior analysis," Applied Energy, Elsevier, vol. 101(C), pages 323-332.
  34. Jin Woo Moon & Sung Kwon Jung & Yong Oh Lee & Sangsun Choi, 2015. "Prediction Performance of an Artificial Neural Network Model for the Amount of Cooling Energy Consumption in Hotel Rooms," Energies, MDPI, vol. 8(8), pages 1-18, August.
  35. Biswas, M.A. Rafe & Robinson, Melvin D. & Fumo, Nelson, 2016. "Prediction of residential building energy consumption: A neural network approach," Energy, Elsevier, vol. 117(P1), pages 84-92.
  36. Wong, L.T. & Mui, K.W. & Guan, Y., 2010. "Shower water heat recovery in high-rise residential buildings of Hong Kong," Applied Energy, Elsevier, vol. 87(2), pages 703-709, February.
  37. Tamás Storcz & Géza Várady & István Kistelegdi & Zsolt Ercsey, 2023. "Regression Models and Shape Descriptors for Building Energy Demand and Comfort Estimation," Energies, MDPI, vol. 16(16), pages 1-20, August.
  38. Swan, Lukas G. & Ugursal, V. Ismet, 2009. "Modeling of end-use energy consumption in the residential sector: A review of modeling techniques," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(8), pages 1819-1835, October.
  39. Yildiz, B. & Bilbao, J.I. & Dore, J. & Sproul, A.B., 2017. "Recent advances in the analysis of residential electricity consumption and applications of smart meter data," Applied Energy, Elsevier, vol. 208(C), pages 402-427.
  40. Hong, Taehoon & Koo, Choongwan & Kim, Daeho & Lee, Minhyun & Kim, Jimin, 2015. "An estimation methodology for the dynamic operational rating of a new residential building using the advanced case-based reasoning and stochastic approaches," Applied Energy, Elsevier, vol. 150(C), pages 308-322.
  41. Wenninger, Simon & Kaymakci, Can & Wiethe, Christian, 2022. "Explainable long-term building energy consumption prediction using QLattice," Applied Energy, Elsevier, vol. 308(C).
  42. Gholami, M. & Barbaresi, A. & Torreggiani, D. & Tassinari, P., 2020. "Upscaling of spatial energy planning, phases, methods, and techniques: A systematic review through meta-analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 132(C).
  43. Theofano Fotiou & Alessia de Vita & Pantelis Capros, 2019. "Economic-Engineering Modelling of the Buildings Sector to Study the Transition towards Deep Decarbonisation in the EU," Energies, MDPI, vol. 12(14), pages 1-28, July.
  44. Baker, Keith J. & Rylatt, R. Mark, 2008. "Improving the prediction of UK domestic energy-demand using annual consumption-data," Applied Energy, Elsevier, vol. 85(6), pages 475-482, June.
  45. Li, Zhengwei & Han, Yanmin & Xu, Peng, 2014. "Methods for benchmarking building energy consumption against its past or intended performance: An overview," Applied Energy, Elsevier, vol. 124(C), pages 325-334.
  46. Foucquier, Aurélie & Robert, Sylvain & Suard, Frédéric & Stéphan, Louis & Jay, Arnaud, 2013. "State of the art in building modelling and energy performances prediction: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 23(C), pages 272-288.
  47. Mat Daut, Mohammad Azhar & Hassan, Mohammad Yusri & Abdullah, Hayati & Rahman, Hasimah Abdul & Abdullah, Md Pauzi & Hussin, Faridah, 2017. "Building electrical energy consumption forecasting analysis using conventional and artificial intelligence methods: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 1108-1118.
  48. Bertrand, Alexandre & Mastrucci, Alessio & Schüler, Nils & Aggoune, Riad & Maréchal, François, 2017. "Characterisation of domestic hot water end-uses for integrated urban thermal energy assessment and optimisation," Applied Energy, Elsevier, vol. 186(P2), pages 152-166.
  49. Beccali, M. & Cellura, M. & Lo Brano, V. & Marvuglia, A., 2008. "Short-term prediction of household electricity consumption: Assessing weather sensitivity in a Mediterranean area," Renewable and Sustainable Energy Reviews, Elsevier, vol. 12(8), pages 2040-2065, October.
  50. Capozzoli, Alfonso & Piscitelli, Marco Savino & Neri, Francesco & Grassi, Daniele & Serale, Gianluca, 2016. "A novel methodology for energy performance benchmarking of buildings by means of Linear Mixed Effect Model: The case of space and DHW heating of out-patient Healthcare Centres," Applied Energy, Elsevier, vol. 171(C), pages 592-607.
  51. Hou, D. & Hassan, I.G. & Wang, L., 2021. "Review on building energy model calibration by Bayesian inference," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.