My bibliography
Save this item
Data-driven district energy management with surrogate models and deep reinforcement learning
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Gao, Yuan & Matsunami, Yuki & Miyata, Shohei & Akashi, Yasunori, 2022. "Multi-agent reinforcement learning dealing with hybrid action spaces: A case study for off-grid oriented renewable building energy system," Applied Energy, Elsevier, vol. 326(C).
- Ghafariasl, Parviz & Mahmoudan, Alireza & Mohammadi, Mahmoud & Nazarparvar, Aria & Hoseinzadeh, Siamak & Fathali, Mani & Chang, Shing & Zeinalnezhad, Masoomeh & Garcia, Davide Astiaso, 2024. "Neural network-based surrogate modeling and optimization of a multigeneration system," Applied Energy, Elsevier, vol. 364(C).
- Qi, Yunying & Xu, Xiao & Liu, Youbo & Pan, Li & Liu, Junyong & Hu, Weihao, 2024. "Intelligent energy management for an on-grid hydrogen refueling station based on dueling double deep Q network algorithm with NoisyNet," Renewable Energy, Elsevier, vol. 222(C).
- Xin, Yong-Lin & Zhao, Tian & Sun, Qing-Han & Chen, Qun, 2024. "An efficient yet accurate optimization algorithm for thermal systems integrating heat current method and generalized Benders decomposition," Energy, Elsevier, vol. 304(C).
- Song, Yuguang & Xia, Mingchao & Chen, Qifang & Chen, Fangjian, 2023. "A data-model fusion dispatch strategy for the building energy flexibility based on the digital twin," Applied Energy, Elsevier, vol. 332(C).
- Pasta, Edoardo & Faedo, Nicolás & Mattiazzo, Giuliana & Ringwood, John V., 2023. "Towards data-driven and data-based control of wave energy systems: Classification, overview, and critical assessment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
- Omar Al-Ani & Sanjoy Das, 2022. "Reinforcement Learning: Theory and Applications in HEMS," Energies, MDPI, vol. 15(17), pages 1-37, September.
- Bu, Yuntao & Yu, Hao & Ji, Haoran & Song, Guanyu & Xu, Jing & Li, Juan & Zhao, Jinli & Li, Peng, 2024. "Hybrid data-driven operation method for demand response of community integrated energy systems utilizing virtual and physical energy storage," Applied Energy, Elsevier, vol. 366(C).
- Chen, Minghao & Xie, Zhiyuan & Sun, Yi & Zheng, Shunlin, 2023. "The predictive management in campus heating system based on deep reinforcement learning and probabilistic heat demands forecasting," Applied Energy, Elsevier, vol. 350(C).
- Zhuang, Dian & Gan, Vincent J.L. & Duygu Tekler, Zeynep & Chong, Adrian & Tian, Shuai & Shi, Xing, 2023. "Data-driven predictive control for smart HVAC system in IoT-integrated buildings with time-series forecasting and reinforcement learning," Applied Energy, Elsevier, vol. 338(C).
- Pinto, Giuseppe & Kathirgamanathan, Anjukan & Mangina, Eleni & Finn, Donal P. & Capozzoli, Alfonso, 2022. "Enhancing energy management in grid-interactive buildings: A comparison among cooperative and coordinated architectures," Applied Energy, Elsevier, vol. 310(C).
- Chen, Minghao & Sun, Yi & Xie, Zhiyuan & Lin, Nvgui & Wu, Peng, 2023. "An efficient and privacy-preserving algorithm for multiple energy hubs scheduling with federated and matching deep reinforcement learning," Energy, Elsevier, vol. 284(C).
- Ayas Shaqour & Aya Hagishima, 2022. "Systematic Review on Deep Reinforcement Learning-Based Energy Management for Different Building Types," Energies, MDPI, vol. 15(22), pages 1-27, November.
- Guo, Yuxiang & Qu, Shengli & Wang, Chuang & Xing, Ziwen & Duan, Kaiwen, 2024. "Optimal dynamic thermal management for data center via soft actor-critic algorithm with dynamic control interval and combined-value state space," Applied Energy, Elsevier, vol. 373(C).
- Mu, Yunfei & Xu, Yurui & Cao, Yan & Chen, Wanqing & Jia, Hongjie & Yu, Xiaodan & Jin, Xiaolong, 2022. "A two-stage scheduling method for integrated community energy system based on a hybrid mechanism and data-driven model," Applied Energy, Elsevier, vol. 323(C).
- Luo, Na & Langevin, Jared & Chandra-Putra, Handi & Lee, Sang Hoon, 2022. "Quantifying the effect of multiple load flexibility strategies on commercial building electricity demand and services via surrogate modeling," Applied Energy, Elsevier, vol. 309(C).
- Seppo Sierla & Heikki Ihasalo & Valeriy Vyatkin, 2022. "A Review of Reinforcement Learning Applications to Control of Heating, Ventilation and Air Conditioning Systems," Energies, MDPI, vol. 15(10), pages 1-25, May.
- Panagiotis Michailidis & Iakovos Michailidis & Elias Kosmatopoulos, 2025. "Reinforcement Learning for Optimizing Renewable Energy Utilization in Buildings: A Review on Applications and Innovations," Energies, MDPI, vol. 18(7), pages 1-40, March.
- Coraci, Davide & Brandi, Silvio & Hong, Tianzhen & Capozzoli, Alfonso, 2023. "Online transfer learning strategy for enhancing the scalability and deployment of deep reinforcement learning control in smart buildings," Applied Energy, Elsevier, vol. 333(C).
- Zhou, Xinlei & Du, Han & Xue, Shan & Ma, Zhenjun, 2024. "Recent advances in data mining and machine learning for enhanced building energy management," Energy, Elsevier, vol. 307(C).
- Charalampos Rafail Lazaridis & Iakovos Michailidis & Georgios Karatzinis & Panagiotis Michailidis & Elias Kosmatopoulos, 2024. "Evaluating Reinforcement Learning Algorithms in Residential Energy Saving and Comfort Management," Energies, MDPI, vol. 17(3), pages 1-33, January.
- Nweye, Kingsley & Sankaranarayanan, Siva & Nagy, Zoltan, 2023. "MERLIN: Multi-agent offline and transfer learning for occupant-centric operation of grid-interactive communities," Applied Energy, Elsevier, vol. 346(C).
- Byung-Ki Jeon & Eui-Jong Kim, 2022. "White-Model Predictive Control for Balancing Energy Savings and Thermal Comfort," Energies, MDPI, vol. 15(7), pages 1-12, March.
- Rémy Rigo-Mariani & Alim Yakub, 2024. "Decision Tree Variations and Online Tuning for Real-Time Control of a Building in a Two-Stage Management Strategy," Energies, MDPI, vol. 17(11), pages 1-17, June.
- Dimitrios Vamvakas & Panagiotis Michailidis & Christos Korkas & Elias Kosmatopoulos, 2023. "Review and Evaluation of Reinforcement Learning Frameworks on Smart Grid Applications," Energies, MDPI, vol. 16(14), pages 1-38, July.
- Silvestri, Alberto & Coraci, Davide & Brandi, Silvio & Capozzoli, Alfonso & Borkowski, Esther & Köhler, Johannes & Wu, Duan & Zeilinger, Melanie N. & Schlueter, Arno, 2024. "Real building implementation of a deep reinforcement learning controller to enhance energy efficiency and indoor temperature control," Applied Energy, Elsevier, vol. 368(C).