IDEAS home Printed from https://ideas.repec.org/r/eee/appene/v198y2017icp108-121.html

The impact of thermal mass on building energy consumption

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Shan, Kui & Wang, Jiayuan & Hu, Maomao & Gao, Dian-ce, 2019. "A model-based control strategy to recover cooling energy from thermal mass in commercial buildings," Energy, Elsevier, vol. 172(C), pages 958-967.
  2. Gábor L. Szabó & Ferenc Kalmár, 2018. "Parametric Analysis of Buildings’ Heat Load Depending on Glazing—Hungarian Case Study," Energies, MDPI, vol. 11(12), pages 1-16, November.
  3. Mamdooh Alwetaishi & Ashraf Balabel & Ahmed Abdelhafiz & Usama Issa & Ibrahim Sharaky & Amal Shamseldin & Mohammed Al-Surf & Mosleh Al-Harthi & Mohamed Gadi, 2020. "User Thermal Comfort in Historic Buildings: Evaluation of the Potential of Thermal Mass, Orientation, Evaporative Cooling and Ventilation," Sustainability, MDPI, vol. 12(22), pages 1-23, November.
  4. Angeliki Kitsopoulou & Evangelos Bellos & Christos Tzivanidis, 2024. "An Up-to-Date Review of Passive Building Envelope Technologies for Sustainable Design," Energies, MDPI, vol. 17(16), pages 1-55, August.
  5. Corcoran, Lloyd & Saikia, Pranaynil & Ugalde-Loo, Carlos E. & Abeysekera, Muditha, 2025. "An effective methodology to quantify cooling demand in the UK housing stock," Applied Energy, Elsevier, vol. 380(C).
  6. Belén Onecha & Eduardo Herrador & Rosnery Castillo & Montserrat Bosch, 2025. "Reaching Near-Zero Environmental Impact in Heritage Buildings: The Case of the Wine Cellar of Rocafort de Queralt," Sustainability, MDPI, vol. 17(2), pages 1-24, January.
  7. Oliveira Panão, Marta J.N. & Mateus, Nuno M. & Carrilho da Graça, G., 2019. "Measured and modeled performance of internal mass as a thermal energy battery for energy flexible residential buildings," Applied Energy, Elsevier, vol. 239(C), pages 252-267.
  8. Li, Mingtong & Shen, Xiong & Wu, Wentao & Cetin, Kristen & Mcintyre, Finn & Wang, Liangzhu & Ding, Lixing & Bishop, Daniel & Bellamy, Larry & Liu, Meng, 2025. "Cooling demand reduction with nighttime natural ventilation to cool internal thermal mass under harmonic design-day weather conditions," Applied Energy, Elsevier, vol. 379(C).
  9. Kuczyński, T. & Staszczuk, A., 2020. "Experimental study of the influence of thermal mass on thermal comfort and cooling energy demand in residential buildings," Energy, Elsevier, vol. 195(C).
  10. Zakula, Tea & Bagaric, Marina & Ferdelji, Nenad & Milovanovic, Bojan & Mudrinic, Sasa & Ritosa, Katia, 2019. "Comparison of dynamic simulations and the ISO 52016 standard for the assessment of building energy performance," Applied Energy, Elsevier, vol. 254(C).
  11. Leccese, Francesco & Salvadori, Giacomo & Asdrubali, Francesco & Gori, Paola, 2018. "Passive thermal behaviour of buildings: Performance of external multi-layered walls and influence of internal walls," Applied Energy, Elsevier, vol. 225(C), pages 1078-1089.
  12. Woong June Chung & Sang Hoon Park, 2021. "Utilization of Thermally Activated Building System with Horizontal Ground Heat Exchanger Considering the Weather Conditions," Energies, MDPI, vol. 14(23), pages 1-14, November.
  13. Yang, Kun & Huo, Ziyu & Du, Na & Li, Jiaxuan & Chai, Yufei & Chen, Yuzhu, 2025. "Experimental investigation of the performance of an innovative delignified wood-based phase change roof integrated with sky radiation cooling," Energy, Elsevier, vol. 325(C).
  14. Carlo Costantino & Stefano Bigiotti & Alvaro Marucci & Riccardo Gulli, 2024. "Long-Term Comparative Life Cycle Assessment, Cost, and Comfort Analysis of Heavyweight vs. Lightweight Construction Systems in a Mediterranean Climate," Sustainability, MDPI, vol. 16(20), pages 1-29, October.
  15. Pierfrancesco Fiore & Giuseppe Donnarumma & Carmelo Falce, 2021. "A Tool for the Evaluation of Energy-Environmental Retrofit Interventions on Opaque Walls Using ETICS," Sustainability, MDPI, vol. 13(7), pages 1-23, April.
  16. Mohammad S. M. Almulhim & Dexter V. L. Hunt & Chris D. F. Rogers, 2020. "A Resilience and Environmentally Sustainable Assessment Framework (RESAF) for Domestic Building Materials in Saudi Arabia," Sustainability, MDPI, vol. 12(8), pages 1-24, April.
  17. Rodrigues, Eugénio & Fernandes, Marco S. & Gaspar, Adélio Rodrigues & Gomes, Álvaro & Costa, José J., 2019. "Thermal transmittance effect on energy consumption of Mediterranean buildings with different thermal mass," Applied Energy, Elsevier, vol. 252(C), pages 1-1.
  18. Staszczuk, A. & Kuczyński, T., 2019. "The impact of floor thermal capacity on air temperature and energy consumption in buildings in temperate climate," Energy, Elsevier, vol. 181(C), pages 908-915.
  19. Ahmed Nouby Mohamed Hassan & Caroline Hachem-Vermette, 2025. "A Data-Driven Decision-Making Tool for Prioritizing Resilience Strategies in Cold-Climate Urban Neighborhoods," Energies, MDPI, vol. 18(20), pages 1-35, October.
  20. Tadeusz Kuczyński & Anna Staszczuk & Piotr Ziembicki & Anna Paluszak, 2021. "The Effect of the Thermal Mass of the Building Envelope on Summer Overheating of Dwellings in a Temperate Climate," Energies, MDPI, vol. 14(14), pages 1-17, July.
  21. Gasper Choonya & Alan Kabanshi & Bahram Moshfegh, 2024. "Experimental Investigation of Wall Confluent Jets on Transparent Large-Space Building Envelopes: Part 1—Application in Heating Greenhouses," Energies, MDPI, vol. 17(24), pages 1-34, December.
  22. Silvia Erba & Lorenzo Pagliano, 2021. "Combining Sufficiency, Efficiency and Flexibility to Achieve Positive Energy Districts Targets," Energies, MDPI, vol. 14(15), pages 1-32, August.
  23. Julia Lima Toroxel & Sandra Monteiro Silva, 2024. "A Review of Passive Solar Heating and Cooling Technologies Based on Bioclimatic and Vernacular Architecture," Energies, MDPI, vol. 17(5), pages 1-28, February.
  24. Rong Hu & Gang Liu & Jianlei Niu, 2020. "The Impacts of a Building’s Thermal Mass on the Cooling Load of a Radiant System under Various Typical Climates," Energies, MDPI, vol. 13(6), pages 1-20, March.
  25. Rasooli, Arash & Itard, Laure, 2019. "In-situ rapid determination of walls’ thermal conductivity, volumetric heat capacity, and thermal resistance, using response factors," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
  26. Nusrat Jannat & Aseel Hussien & Badr Abdullah & Alison Cotgrave, 2020. "A Comparative Simulation Study of the Thermal Performances of the Building Envelope Wall Materials in the Tropics," Sustainability, MDPI, vol. 12(12), pages 1-26, June.
  27. Bienvenido-Huertas, David & Moyano, Juan & Rodríguez-Jiménez, Carlos E. & Marín, David, 2019. "Applying an artificial neural network to assess thermal transmittance in walls by means of the thermometric method," Applied Energy, Elsevier, vol. 233, pages 1-14.
  28. Rajat Gupta & Matt Gregg, 2021. "Integrated Testing of Building Fabric Thermal Performance for Calibration of Energy Models of Three Low-Energy Dwellings in the UK," Sustainability, MDPI, vol. 13(5), pages 1-24, March.
  29. Wu, Wentao & Zhang, Wei & Benner, Jingru & Malkawi, Ali, 2020. "Critical evaluation of analytical methods for thermally activated building systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 117(C).
  30. Kuczyński, Tadeusz & Staszczuk, Anna, 2023. "Experimental study of the thermal behavior of PCM and heavy building envelope structures during summer in a temperate climate," Energy, Elsevier, vol. 279(C).
  31. Imre Csáky, 2021. "Analysis of Daily Energy Demand for Cooling in Buildings with Different Comfort Categories—Case Study," Energies, MDPI, vol. 14(15), pages 1-17, August.
  32. Mukilan Poyyamozhi & Balasubramanian Murugesan & Rajamanickam Narayanamoorthi & Thenarasan Latha Abinaya & Mohammad Shorfuzzaman & Yasser Aboelmagd, 2024. "Sustainable Concrete Roof Tiles: Integrating Aluminium Foil, Fly Ash, Solar PV, and Management," Sustainability, MDPI, vol. 16(18), pages 1-22, September.
  33. Anna Staszczuk & Tadeusz Kuczyński, 2023. "Cumulative Multi-Day Effect of Ambient Temperature on Thermal Behaviour of Buildings with Different Thermal Masses," Energies, MDPI, vol. 16(21), pages 1-15, October.
  34. Dimitrios Tyris & Apostolos Gkountas & Panteleimon Bakalis & Panagiotis Panagakis & Dimitris Manolakos, 2023. "A Dynamic Heat Pump Model for Indoor Climate Control of a Broiler House," Energies, MDPI, vol. 16(6), pages 1-21, March.
  35. Gupta, V. & Deb, C., 2023. "Envelope design for low-energy buildings in the tropics: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 186(C).
  36. Xiaofeng Guo & Alain Pascal Goumba & Cheng Wang, 2019. "Comparison of Direct and Indirect Active Thermal Energy Storage Strategies for Large-Scale Solar Heating Systems," Energies, MDPI, vol. 12(10), pages 1-18, May.
  37. Xia, Z.H. & Jia, G.S. & Ma, Z.D. & Wang, J.W. & Zhang, Y.P. & Jin, L.W., 2021. "Analysis of economy, thermal efficiency and environmental impact of geothermal heating system based on life cycle assessments," Applied Energy, Elsevier, vol. 303(C).
  38. Ashraf Balabel & Mamdooh Alwetaishi, 2021. "Towards Sustainable Residential Buildings in Saudi Arabia According to the Conceptual Framework of “Mostadam” Rating System and Vision 2030," Sustainability, MDPI, vol. 13(2), pages 1-16, January.
  39. Abir Khechiba & Djamila Djaghrouri & Moussadek Benabbas & Francesco Leccese & Michele Rocca & Giacomo Salvadori, 2023. "Balancing Thermal Comfort and Energy Consumption in Residential Buildings of Desert Areas: Impact of Passive Strategies," Sustainability, MDPI, vol. 15(10), pages 1-21, May.
  40. Tian, Shen & Gao, Yuping & Shao, Shuangquan & Xu, Hongbo & Tian, Changqing, 2018. "Measuring the transient airflow rates of the infiltration through the doorway of the cold store by using a local air velocity linear fitting method," Applied Energy, Elsevier, vol. 227(C), pages 480-487.
  41. Moeller, Simon & Bauer, Amelie, 2022. "Energy (in)efficient comfort practices: How building retrofits influence energy behaviours in multi-apartment buildings," Energy Policy, Elsevier, vol. 168(C).
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.