IDEAS home Printed from https://ideas.repec.org/r/eee/appene/v179y2016icp996-1005.html
   My bibliography  Save this item

A regression-based approach to estimating retrofit savings using the Building Performance Database

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Jing, Gang & Cai, Wenjian & Zhang, Xin & Cui, Can & Yin, Xiaohong & Xian, Huacai, 2019. "An energy-saving oriented air balancing strategy for multi-zone demand-controlled ventilation system," Energy, Elsevier, vol. 172(C), pages 1053-1065.
  2. Siti Birkha Mohd Ali & Amirhossein Mehdipoor & Noora Samsina Johari & Md. Hasanuzzaman & Nasrudin Abd Rahim, 2022. "Modeling and Performance Analysis for High-Rise Building Using ArchiCAD: Initiatives towards Energy-Efficient Building," Sustainability, MDPI, vol. 14(15), pages 1-24, August.
  3. Bertone, Edoardo & Sahin, Oz & Stewart, Rodney A. & Zou, Patrick X.W. & Alam, Morshed & Hampson, Keith & Blair, Evan, 2018. "Role of financial mechanisms for accelerating the rate of water and energy efficiency retrofits in Australian public buildings: Hybrid Bayesian Network and System Dynamics modelling approach," Applied Energy, Elsevier, vol. 210(C), pages 409-419.
  4. Jie, Pengfei & Yan, Fuchun & Li, Jing & Zhang, Yumei & Wen, Zhimei, 2019. "Optimizing the insulation thickness of walls of existing buildings with CHP-based district heating systems," Energy, Elsevier, vol. 189(C).
  5. Khayatian, Fazel & Sarto, Luca & Dall'O', Giuliano, 2017. "Building energy retrofit index for policy making and decision support at regional and national scales," Applied Energy, Elsevier, vol. 206(C), pages 1062-1075.
  6. Shiyi Song & Hong Leng & Ran Guo, 2022. "Multi-Agent-Based Model for the Urban Macro-Level Impact Factors of Building Energy Consumption on Different Types of Land," Land, MDPI, vol. 11(11), pages 1-24, November.
  7. Guirec Ruellan & Mario Cools & Shady Attia, 2021. "Analysis of the Determining Factors for the Renovation of the Walloon Residential Building Stock," Sustainability, MDPI, vol. 13(4), pages 1-20, February.
  8. Grillone, Benedetto & Danov, Stoyan & Sumper, Andreas & Cipriano, Jordi & Mor, Gerard, 2020. "A review of deterministic and data-driven methods to quantify energy efficiency savings and to predict retrofitting scenarios in buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).
  9. Mirfin, Anthony & Xiao, Xun & Jack, Michael W., 2024. "TOWST: A physics-informed statistical model for building energy consumption with solar gain," Applied Energy, Elsevier, vol. 369(C).
  10. Piotr Michalak & Krzysztof Szczotka & Jakub Szymiczek, 2023. "Audit-Based Energy Performance Analysis of Multifamily Buildings in South-East Poland," Energies, MDPI, vol. 16(12), pages 1-21, June.
  11. Martin Eriksson & Jan Akander & Bahram Moshfegh, 2022. "Investigating Energy Use in a City District in Nordic Climate Using Energy Signature," Energies, MDPI, vol. 15(5), pages 1-22, March.
  12. Chul-Ho Kim & Seung-Eon Lee & Kang-Soo Kim, 2018. "Analysis of Energy Saving Potential in High-Performance Building Technologies under Korean Climatic Conditions," Energies, MDPI, vol. 11(4), pages 1-34, April.
  13. Jie, Pengfei & Zhang, Fenghe & Fang, Zhou & Wang, Hongbo & Zhao, Yunfeng, 2018. "Optimizing the insulation thickness of walls and roofs of existing buildings based on primary energy consumption, global cost and pollutant emissions," Energy, Elsevier, vol. 159(C), pages 1132-1147.
  14. Yang, Xiu'e & Liu, Shuli & Zou, Yuliang & Ji, Wenjie & Zhang, Qunli & Ahmed, Abdullahi & Han, Xiaojing & Shen, Yongliang & Zhang, Shaoliang, 2022. "Energy-saving potential prediction models for large-scale building: A state-of-the-art review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
  15. Yildiz, B. & Bilbao, J.I. & Sproul, A.B., 2017. "A review and analysis of regression and machine learning models on commercial building electricity load forecasting," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 1104-1122.
  16. Soutullo, S. & Giancola, E. & Heras, M.R., 2018. "Dynamic energy assessment to analyze different refurbishment strategies of existing dwellings placed in Madrid," Energy, Elsevier, vol. 152(C), pages 1011-1023.
  17. Liu, Xue & Ding, Yong & Tang, Hao & Fan, Lingxiao & Lv, Jie, 2022. "Investigating the effects of key drivers on energy consumption of nonresidential buildings: A data-driven approach integrating regularization and quantile regression," Energy, Elsevier, vol. 244(PA).
  18. Jeffrey D. Spitler & Signhild Gehlin, 2019. "Measured Performance of a Mixed-Use Commercial-Building Ground Source Heat Pump System in Sweden," Energies, MDPI, vol. 12(10), pages 1-34, May.
  19. Man Ying (Annie) Ho & Joseph H. K. Lai & Huiying (Cynthia) Hou & Dadi Zhang, 2021. "Key Performance Indicators for Evaluation of Commercial Building Retrofits: Shortlisting via an Industry Survey," Energies, MDPI, vol. 14(21), pages 1-30, November.
  20. Hongquan Ruan & Xin Gao & Chaoxuan Mao, 2018. "Empirical Study on Annual Energy-Saving Performance of Energy Performance Contracting in China," Sustainability, MDPI, vol. 10(5), pages 1-25, May.
  21. Mohseni-Gharyehsafa, Behnam & Hussain, Shahid & Fahy, Amy & De Rosa, Mattia & Pallonetto, Fabiano, 2025. "A hybrid Gaussian process-integrated deep learning model for retrofitted building energy optimization in smart city ecosystems," Applied Energy, Elsevier, vol. 388(C).
  22. Zhang, Chaobo & Li, Junyang & Zhao, Yang & Li, Tingting & Chen, Qi & Zhang, Xuejun & Qiu, Weikang, 2021. "Problem of data imbalance in building energy load prediction: Concept, influence, and solution," Applied Energy, Elsevier, vol. 297(C).
  23. Aste, Niccolò & Manfren, Massimiliano & Marenzi, Giorgia, 2017. "Building Automation and Control Systems and performance optimization: A framework for analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 313-330.
  24. Shiyi Song & Hong Leng & Han Xu & Ran Guo & Yan Zhao, 2020. "Impact of Urban Morphology and Climate on Heating Energy Consumption of Buildings in Severe Cold Regions," IJERPH, MDPI, vol. 17(22), pages 1-24, November.
  25. Ahmed Gassar, Abdo Abdullah & Yun, Geun Young & Kim, Sumin, 2019. "Data-driven approach to prediction of residential energy consumption at urban scales in London," Energy, Elsevier, vol. 187(C).
  26. Paola Marrone & Paola Gori & Francesco Asdrubali & Luca Evangelisti & Laura Calcagnini & Gianluca Grazieschi, 2018. "Energy Benchmarking in Educational Buildings through Cluster Analysis of Energy Retrofitting," Energies, MDPI, vol. 11(3), pages 1-20, March.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.