IDEAS home Printed from https://ideas.repec.org/r/eee/appene/v145y2015icp111-123.html
   My bibliography  Save this item

Thermal inertia and energy efficiency – Parametric simulation assessment on a calibrated case study

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Gábor L. Szabó & Ferenc Kalmár, 2018. "Parametric Analysis of Buildings’ Heat Load Depending on Glazing—Hungarian Case Study," Energies, MDPI, vol. 11(12), pages 1-16, November.
  2. Bruno, Roberto & Bevilacqua, Piero & Cuconati, Teresa & Arcuri, Natale, 2019. "Energy evaluations of an innovative multi-storey wooden near Zero Energy Building designed for Mediterranean areas," Applied Energy, Elsevier, vol. 238(C), pages 929-941.
  3. Gábor L. Szabó, 2020. "Thermo-Chemical Instability and Energy Analysis of Absorption Heat Pumps," Energies, MDPI, vol. 13(8), pages 1-13, April.
  4. Kuczyński, T. & Staszczuk, A., 2020. "Experimental study of the influence of thermal mass on thermal comfort and cooling energy demand in residential buildings," Energy, Elsevier, vol. 195(C).
  5. Verbeke, Stijn & Audenaert, Amaryllis, 2018. "Thermal inertia in buildings: A review of impacts across climate and building use," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2300-2318.
  6. Ascione, Fabrizio & De Masi, Rosa Francesca & de Rossi, Filippo & Ruggiero, Silvia & Vanoli, Giuseppe Peter, 2016. "Optimization of building envelope design for nZEBs in Mediterranean climate: Performance analysis of residential case study," Applied Energy, Elsevier, vol. 183(C), pages 938-957.
  7. Tronchin, Lamberto & Manfren, Massimiliano & James, Patrick AB., 2018. "Linking design and operation performance analysis through model calibration: Parametric assessment on a Passive House building," Energy, Elsevier, vol. 165(PA), pages 26-40.
  8. Emmanouil Katsigiannis & Petros Antonios Gerogiannis & Ioannis Atsonios & Ioannis Mandilaras & Maria Founti, 2023. "Design and Parametric Analysis of a Solar-Driven Façade Active Layer System for Dynamic Insulation and Radiant Heating: A Renovation Solution for Residential Buildings," Energies, MDPI, vol. 16(13), pages 1-18, July.
  9. Tronchin, Lamberto & Manfren, Massimiliano & Nastasi, Benedetto, 2018. "Energy efficiency, demand side management and energy storage technologies – A critical analysis of possible paths of integration in the built environment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 95(C), pages 341-353.
  10. Staszczuk, Anna & Kuczyński, Tadeusz, 2021. "The impact of wall and roof material on the summer thermal performance of building in a temperate climate," Energy, Elsevier, vol. 228(C).
  11. Oriol Pons-Valladares & Jelena Nikolic, 2020. "Sustainable Design, Construction, Refurbishment and Restoration of Architecture: A Review," Sustainability, MDPI, vol. 12(22), pages 1-18, November.
  12. Massimiliano Manfren & Benedetto Nastasi, 2020. "Parametric Performance Analysis and Energy Model Calibration Workflow Integration—A Scalable Approach for Buildings," Energies, MDPI, vol. 13(3), pages 1-14, February.
  13. Safieddine Ounis & Niccolò Aste & Federico M. Butera & Claudio Del Pero & Fabrizio Leonforte & Rajendra S. Adhikari, 2022. "Optimal Balance between Heating, Cooling and Environmental Impacts: A Method for Appropriate Assessment of Building Envelope’s U-Value," Energies, MDPI, vol. 15(10), pages 1-17, May.
  14. Hyeunguk Ahn & Jingjing Liu & Donghun Kim & Rongxin Yin & Tianzhen Hong & Mary Ann Piette, 2021. "How Can Floor Covering Influence Buildings’ Demand Flexibility?," Energies, MDPI, vol. 14(12), pages 1-17, June.
  15. Rodrigues, Eugénio & Fernandes, Marco S. & Gaspar, Adélio Rodrigues & Gomes, Álvaro & Costa, José J., 2019. "Thermal transmittance effect on energy consumption of Mediterranean buildings with different thermal mass," Applied Energy, Elsevier, vol. 252(C), pages 1-1.
  16. David Božiček & Roman Kunič & Aleš Krainer & Uroš Stritih & Mateja Dovjak, 2023. "Mutual Influence of External Wall Thermal Transmittance, Thermal Inertia, and Room Orientation on Office Thermal Comfort and Energy Demand," Energies, MDPI, vol. 16(8), pages 1-29, April.
  17. Avendaño-Vera, Constanza & Martinez-Soto, Aner & Marincioni, Valentina, 2020. "Determination of optimal thermal inertia of building materials for housing in different Chilean climate zones," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).
  18. Staszczuk, A. & Kuczyński, T., 2019. "The impact of floor thermal capacity on air temperature and energy consumption in buildings in temperate climate," Energy, Elsevier, vol. 181(C), pages 908-915.
  19. Gourlis, Georgios & Kovacic, Iva, 2016. "A study on building performance analysis for energy retrofit of existing industrial facilities," Applied Energy, Elsevier, vol. 184(C), pages 1389-1399.
  20. Tori, Felipe & Bustamante, Waldo & Vera, Sergio, 2022. "Analysis of Net Zero Energy Buildings public policies at the residential building sector: A comparison between Chile and selected countries," Energy Policy, Elsevier, vol. 161(C).
  21. Aste, Niccolò & Manfren, Massimiliano & Marenzi, Giorgia, 2017. "Building Automation and Control Systems and performance optimization: A framework for analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 313-330.
  22. de Rubeis, Tullio & Nardi, Iole & Ambrosini, Dario & Paoletti, Domenica, 2018. "Is a self-sufficient building energy efficient? Lesson learned from a case study in Mediterranean climate," Applied Energy, Elsevier, vol. 218(C), pages 131-145.
  23. Corrado, Vincenzo & Paduos, Simona, 2016. "New equivalent parameters for thermal characterization of opaque building envelope components under dynamic conditions," Applied Energy, Elsevier, vol. 163(C), pages 313-322.
  24. Umberto Berardi & Lamberto Tronchin & Massimiliano Manfren & Benedetto Nastasi, 2018. "On the Effects of Variation of Thermal Conductivity in Buildings in the Italian Construction Sector," Energies, MDPI, vol. 11(4), pages 1-17, April.
  25. Lydon, G.P. & Hofer, J. & Svetozarevic, B. & Nagy, Z. & Schlueter, A., 2017. "Coupling energy systems with lightweight structures for a net plus energy building," Applied Energy, Elsevier, vol. 189(C), pages 310-326.
  26. Nuno Simões & Joana Prata & António Tadeu, 2019. "3D Dynamic Simulation of Heat Conduction through a Building Corner Using a BEM Model in the Frequency Domain," Energies, MDPI, vol. 12(23), pages 1-27, December.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.