IDEAS home Printed from https://ideas.repec.org/r/bla/biomet/v55y1999i3p688-698.html
   My bibliography  Save this item

Marginally Specified Logistic-Normal Models for Longitudinal Binary Data

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Francesco, Bartolucci & Silvia, Bacci & Claudia, Pigini, 2015. "A misspecification test for finite-mixture logistic models for clustered binary and ordered responses," MPRA Paper 64220, University Library of Munich, Germany.
  2. Peter McCullagh, 2008. "Sampling bias and logistic models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 70(4), pages 643-677, September.
  3. Sara Sauer & Bethany Hedt‐Gauthier & Claudia Rivera‐Rodriguez & Sebastien Haneuse, 2022. "Small‐sample inference for cluster‐based outcome‐dependent sampling schemes in resource‐limited settings: Investigating low birthweight in Rwanda," Biometrics, The International Biometric Society, vol. 78(2), pages 701-715, June.
  4. J. Perin & J. S. Preisser & C. Phillips & B. Qaqish, 2014. "Regression analysis of correlated ordinal data using orthogonalized residuals," Biometrics, The International Biometric Society, vol. 70(4), pages 902-909, December.
  5. Steven Teerenstra & Bing Lu & John S. Preisser & Theo van Achterberg & George F. Borm, 2010. "Sample Size Considerations for GEE Analyses of Three-Level Cluster Randomized Trials," Biometrics, The International Biometric Society, vol. 66(4), pages 1230-1237, December.
  6. Zengri Wang & Thomas A. Louis, 2004. "Marginalized Binary Mixed-Effects Models with Covariate-Dependent Random Effects and Likelihood Inference," Biometrics, The International Biometric Society, vol. 60(4), pages 884-891, December.
  7. Dandan Liu & John D. Kalbfleisch & Douglas E. Schaubel, 2011. "A Positive Stable Frailty Model for Clustered Failure Time Data with Covariate-Dependent Frailty," Biometrics, The International Biometric Society, vol. 67(1), pages 8-17, March.
  8. Tanya P. Garcia & Yanyuan Ma, 2016. "Optimal Estimator for Logistic Model with Distribution-free Random Intercept," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 43(1), pages 156-171, March.
  9. Iraj Kazemi & Fatemeh Hassanzadeh, 2021. "Marginalized random-effects models for clustered binomial data through innovative link functions," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 105(2), pages 197-228, June.
  10. Yingye Zheng & Patrick J. Heagerty & Li Hsu & Polly A. Newcomb, 2010. "On Combining Family-Based and Population-Based Case–Control Data in Association Studies," Biometrics, The International Biometric Society, vol. 66(4), pages 1024-1033, December.
  11. Kenneth J. Wilkins & Garrett M. Fitzmaurice, 2006. "A Hybrid Model for Nonignorable Dropout in Longitudinal Binary Responses," Biometrics, The International Biometric Society, vol. 62(1), pages 168-176, March.
  12. Samuel Iddi & Geert Molenberghs, 2012. "A joint marginalized multilevel model for longitudinal outcomes," Journal of Applied Statistics, Taylor & Francis Journals, vol. 39(11), pages 2413-2430, July.
  13. Lee, Keunbaik & Joo, Yongsung & Song, Joon Jin & Harper, Dee Wood, 2011. "Analysis of zero-inflated clustered count data: A marginalized model approach," Computational Statistics & Data Analysis, Elsevier, vol. 55(1), pages 824-837, January.
  14. Raymond J. Carroll, 2003. "Variances Are Not Always Nuisance Parameters," Biometrics, The International Biometric Society, vol. 59(2), pages 211-220, June.
  15. Rana, Subrata & Roy, Surupa & Das, Kalyan, 2018. "Analysis of ordinal longitudinal data under nonignorable missingness and misreporting: An application to Alzheimer’s disease study," Journal of Multivariate Analysis, Elsevier, vol. 166(C), pages 62-77.
  16. Yu, Lei & Tyas, Suzanne L. & Snowdon, David A. & Kryscio, Richard J., 2009. "Effects of ignoring baseline on modeling transitions from intact cognition to dementia," Computational Statistics & Data Analysis, Elsevier, vol. 53(9), pages 3334-3343, July.
  17. Huang, Youjun & Pan, Jianxin, 2021. "Joint generalized estimating equations for longitudinal binary data," Computational Statistics & Data Analysis, Elsevier, vol. 155(C).
  18. Peter Hall & Hans‐Georg Müller & Fang Yao, 2008. "Modelling sparse generalized longitudinal observations with latent Gaussian processes," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 70(4), pages 703-723, September.
  19. Roula Tsonaka & Dimitris Rizopoulos & Geert Verbeke & Emmanuel Lesaffre, 2010. "Nonignorable Models for Intermittently Missing Categorical Longitudinal Responses," Biometrics, The International Biometric Society, vol. 66(3), pages 834-844, September.
  20. Iddi, Samuel & Molenberghs, Geert, 2012. "A combined overdispersed and marginalized multilevel model," Computational Statistics & Data Analysis, Elsevier, vol. 56(6), pages 1944-1951.
  21. Özgür Asar & Ozlem Ilk, 2016. "First-order marginalised transition random effects models with probit link function," Journal of Applied Statistics, Taylor & Francis Journals, vol. 43(5), pages 925-942, April.
  22. Bartolucci, Francesco & Bacci, Silvia & Pigini, Claudia, 2017. "Misspecification test for random effects in generalized linear finite-mixture models for clustered binary and ordered data," Econometrics and Statistics, Elsevier, vol. 3(C), pages 112-131.
  23. Lee, Keunbaik & Sohn, Insuk & Kim, Donguk, 2016. "Analysis of long series of longitudinal ordinal data using marginalized models," Computational Statistics & Data Analysis, Elsevier, vol. 94(C), pages 363-371.
  24. Iddi Samuel & Nwoko Esther O., 2017. "Effect of covariate misspecifications in the marginalized zero-inflated Poisson model," Monte Carlo Methods and Applications, De Gruyter, vol. 23(2), pages 111-120, June.
  25. Gul Inan & John Preisser & Kalyan Das, 2018. "A Score Test for Testing a Marginalized Zero-Inflated Poisson Regression Model Against a Marginalized Zero-Inflated Negative Binomial Regression Model," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 23(1), pages 113-128, March.
  26. Lee, Keunbaik & Joo, Yongsung, 2019. "Marginalized models for longitudinal count data," Computational Statistics & Data Analysis, Elsevier, vol. 136(C), pages 47-58.
  27. Jonathan S. Schildcrout & Patrick J. Heagerty, 2007. "Marginalized Models for Moderate to Long Series of Longitudinal Binary Response Data," Biometrics, The International Biometric Society, vol. 63(2), pages 322-331, June.
  28. Jonathan S. Schildcrout & Paul J. Rathouz, 2010. "Longitudinal Studies of Binary Response Data Following Case–Control and Stratified Case–Control Sampling: Design and Analysis," Biometrics, The International Biometric Society, vol. 66(2), pages 365-373, June.
  29. Bruce J. Swihart & Brian S. Caffo & Ciprian M. Crainiceanu, 2014. "A Unifying Framework for Marginalised Random-Intercept Models of Correlated Binary Outcomes," International Statistical Review, International Statistical Institute, vol. 82(2), pages 275-295, August.
  30. Loni Philip Tabb & Eric J. Tchetgen Tchetgen & Greg A. Wellenius & Brent A. Coull, 2016. "Marginalized Zero-Altered Models for Longitudinal Count Data," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 8(2), pages 181-203, October.
  31. Miran A. Jaffa & Ayad A. Jaffa, 2019. "A Likelihood-Based Approach with Shared Latent Random Parameters for the Longitudinal Binary and Informative Censoring Processes," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 11(3), pages 597-613, December.
  32. Keunbaik Lee & Michael J. Daniels, 2007. "A Class of Markov Models for Longitudinal Ordinal Data," Biometrics, The International Biometric Society, vol. 63(4), pages 1060-1067, December.
  33. Lee, Keunbaik & Mercante, Donald, 2010. "Longitudinal nominal data analysis using marginalized models," Computational Statistics & Data Analysis, Elsevier, vol. 54(1), pages 208-218, January.
  34. Jonathan S. Schildcrout & Patrick J. Heagerty, 2011. "Outcome-Dependent Sampling from Existing Cohorts with Longitudinal Binary Response Data: Study Planning and Analysis," Biometrics, The International Biometric Society, vol. 67(4), pages 1583-1593, December.
  35. J. E. Mills & C. A. Field & D. J. Dupuis, 2002. "Marginally Specified Generalized Linear Mixed Models: A Robust Approach," Biometrics, The International Biometric Society, vol. 58(4), pages 727-734, December.
  36. Jane Osburn, 2011. "A Latent Variable Approach to Examining the Effects of HR Policies on the Inter- and Intra-Establishment Wage and Employment Structure: A Study of Two Precision Manufacturing Industries," Working Papers 451, U.S. Bureau of Labor Statistics.
  37. B. C. Sutradhar, 2008. "On auto-regression type dynamic mixed models for binary panel data," Metron - International Journal of Statistics, Dipartimento di Statistica, Probabilità e Statistiche Applicate - University of Rome, vol. 0(2), pages 209-221.
  38. Gul Inan & Ozlem Ilk, 2019. "A marginalized multilevel model for bivariate longitudinal binary data," Statistical Papers, Springer, vol. 60(3), pages 601-628, June.
  39. Lee, Keunbaik & Lee, JungBok & Hagan, Joseph & Yoo, Jae Keun, 2012. "Modeling the random effects covariance matrix for generalized linear mixed models," Computational Statistics & Data Analysis, Elsevier, vol. 56(6), pages 1545-1551.
  40. Anders Skrondal & Sophia Rabe-Hesketh, 2022. "The Role of Conditional Likelihoods in Latent Variable Modeling," Psychometrika, Springer;The Psychometric Society, vol. 87(3), pages 799-834, September.
  41. Sartori, N. & Severini, T.A. & Marras, E., 2010. "An alternative specification of generalized linear mixed models," Computational Statistics & Data Analysis, Elsevier, vol. 54(2), pages 575-584, February.
  42. Molin Wang & John M. Williamson, 2005. "Generalization of the Mantel–Haenszel Estimating Function for Sparse Clustered Binary Data," Biometrics, The International Biometric Society, vol. 61(4), pages 973-981, December.
  43. Lee, Keunbaik & Baek, Changryong & Daniels, Michael J., 2017. "ARMA Cholesky factor models for the covariance matrix of linear models," Computational Statistics & Data Analysis, Elsevier, vol. 115(C), pages 267-280.
  44. Al Kadiri, M. & Carroll, R.J. & Wand, M.P., 2010. "Marginal longitudinal semiparametric regression via penalized splines," Statistics & Probability Letters, Elsevier, vol. 80(15-16), pages 1242-1252, August.
  45. Jason Roy & Michael J. Daniels, 2008. "A General Class of Pattern Mixture Models for Nonignorable Dropout with Many Possible Dropout Times," Biometrics, The International Biometric Society, vol. 64(2), pages 538-545, June.
  46. Laura Boehm & Brian J. Reich & Dipankar Bandyopadhyay, 2013. "Bridging Conditional and Marginal Inference for Spatially Referenced Binary Data," Biometrics, The International Biometric Society, vol. 69(2), pages 545-554, June.
  47. Keunbaik Lee & Sanggil Kang & Xuefeng Liu & Daekwan Seo, 2011. "Likelihood-based approach for analysis of longitudinal nominal data using marginalized random effects models," Journal of Applied Statistics, Taylor & Francis Journals, vol. 38(8), pages 1577-1590, July.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.