IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v155y2021ics0167947320302012.html
   My bibliography  Save this article

Joint generalized estimating equations for longitudinal binary data

Author

Listed:
  • Huang, Youjun
  • Pan, Jianxin

Abstract

Modeling longitudinal binary data is challenging but common in practice. Existing methods on modeling of binary responses take no account of the fact that the correlation coefficient of binary responses must have an upper bound which is smaller than one. Ignoring this fact can lead to incorrect statistical inferences for longitudinal binary data. A novel method is proposed to model the mean and within-subject correlation coefficients for longitudinal binary data, simultaneously, by taking into account the constraints of the upper bounds. By introducing latent normally distributed random variables, the correlation coefficients of binary responses are connected to those for the latent variables, of which the correlation coefficients are modeled accordingly. A joint generalized estimating equation (GEE) method is developed for this purpose and the resulting correlation coefficients are shown to satisfy the constraints. Asymptotic normality of the parameter estimators is derived and simulation studies are made under various scenarios, showing that the proposed joint GEE method works very well even if the working covariance structures are misspecified. For illustration, the proposed method is applied to two real data practices to assess the effects of covariates on the mean and within-subject correlation coefficients.

Suggested Citation

  • Huang, Youjun & Pan, Jianxin, 2021. "Joint generalized estimating equations for longitudinal binary data," Computational Statistics & Data Analysis, Elsevier, vol. 155(C).
  • Handle: RePEc:eee:csdana:v:155:y:2021:i:c:s0167947320302012
    DOI: 10.1016/j.csda.2020.107110
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167947320302012
    Download Restriction: Full text for ScienceDirect subscribers only.

    File URL: https://libkey.io/10.1016/j.csda.2020.107110?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Brajendra C. Sutradhar & Kalyan Das, 2000. "On the Accuracy of Efficiency of Estimating Equation Approach," Biometrics, The International Biometric Society, vol. 56(2), pages 622-625, June.
    2. Zengri Wang, 2003. "Matching conditional and marginal shapes in binary random intercept models using a bridge distribution function," Biometrika, Biometrika Trust, vol. 90(4), pages 765-775, December.
    3. Wei Pan, 2001. "Akaike's Information Criterion in Generalized Estimating Equations," Biometrics, The International Biometric Society, vol. 57(1), pages 120-125, March.
    4. Lan Wang & Jianhui Zhou & Annie Qu, 2012. "Penalized Generalized Estimating Equations for High-Dimensional Longitudinal Data Analysis," Biometrics, The International Biometric Society, vol. 68(2), pages 353-360, June.
    5. N. Rao Chaganty & Harry Joe, 2004. "Efficiency of generalized estimating equations for binary responses," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 66(4), pages 851-860, November.
    6. Patrick J. Heagerty, 1999. "Marginally Specified Logistic-Normal Models for Longitudinal Binary Data," Biometrics, The International Biometric Society, vol. 55(3), pages 688-698, September.
    7. Huajun Ye & Jianxin Pan, 2006. "Modelling of covariance structures in generalised estimating equations for longitudinal data," Biometrika, Biometrika Trust, vol. 93(4), pages 927-941, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Peng, Cheng & Yang, Yihe & Zhou, Jie & Pan, Jianxin, 2022. "Latent Gaussian copula models for longitudinal binary data," Journal of Multivariate Analysis, Elsevier, vol. 189(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Peng, Cheng & Yang, Yihe & Zhou, Jie & Pan, Jianxin, 2022. "Latent Gaussian copula models for longitudinal binary data," Journal of Multivariate Analysis, Elsevier, vol. 189(C).
    2. Bruce J. Swihart & Brian S. Caffo & Ciprian M. Crainiceanu, 2014. "A Unifying Framework for Marginalised Random-Intercept Models of Correlated Binary Outcomes," International Statistical Review, International Statistical Institute, vol. 82(2), pages 275-295, August.
    3. Nooraee, Nazanin & Molenberghs, Geert & van den Heuvel, Edwin R., 2014. "GEE for longitudinal ordinal data: Comparing R-geepack, R-multgee, R-repolr, SAS-GENMOD, SPSS-GENLIN," Computational Statistics & Data Analysis, Elsevier, vol. 77(C), pages 70-83.
    4. Lv, Jing & Guo, Chaohui & Yang, Hu & Li, Yalian, 2017. "A moving average Cholesky factor model in covariance modeling for composite quantile regression with longitudinal data," Computational Statistics & Data Analysis, Elsevier, vol. 112(C), pages 129-144.
    5. Vens, Maren & Ziegler, Andreas, 2012. "Generalized estimating equations and regression diagnostics for longitudinal controlled clinical trials: A case study," Computational Statistics & Data Analysis, Elsevier, vol. 56(5), pages 1232-1242.
    6. Jason Roy & Michael J. Daniels, 2008. "A General Class of Pattern Mixture Models for Nonignorable Dropout with Many Possible Dropout Times," Biometrics, The International Biometric Society, vol. 64(2), pages 538-545, June.
    7. Li, Gaorong & Lian, Heng & Feng, Sanying & Zhu, Lixing, 2013. "Automatic variable selection for longitudinal generalized linear models," Computational Statistics & Data Analysis, Elsevier, vol. 61(C), pages 174-186.
    8. Jonathan S. Schildcrout & Patrick J. Heagerty, 2007. "Marginalized Models for Moderate to Long Series of Longitudinal Binary Response Data," Biometrics, The International Biometric Society, vol. 63(2), pages 322-331, June.
    9. Iddi, Samuel & Molenberghs, Geert, 2012. "A combined overdispersed and marginalized multilevel model," Computational Statistics & Data Analysis, Elsevier, vol. 56(6), pages 1944-1951.
    10. Iraj Kazemi & Fatemeh Hassanzadeh, 2021. "Marginalized random-effects models for clustered binomial data through innovative link functions," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 105(2), pages 197-228, June.
    11. Geronimi, J. & Saporta, G., 2017. "Variable selection for multiply-imputed data with penalized generalized estimating equations," Computational Statistics & Data Analysis, Elsevier, vol. 110(C), pages 103-114.
    12. Laura Boehm & Brian J. Reich & Dipankar Bandyopadhyay, 2013. "Bridging Conditional and Marginal Inference for Spatially Referenced Binary Data," Biometrics, The International Biometric Society, vol. 69(2), pages 545-554, June.
    13. Jakub Stoklosa & Heloise Gibb & David I. Warton, 2014. "Fast forward selection for generalized estimating equations with a large number of predictor variables," Biometrics, The International Biometric Society, vol. 70(1), pages 110-120, March.
    14. María Carmen Pardo & Rosa Alonso, 2019. "Working correlation structure selection in GEE analysis," Statistical Papers, Springer, vol. 60(5), pages 1447-1467, October.
    15. You-Gan Wang & Xu Lin, 2005. "Effects of Variance-Function Misspecification in Analysis of Longitudinal Data," Biometrics, The International Biometric Society, vol. 61(2), pages 413-421, June.
    16. Luo, Renwen & Pan, Jianxin, 2022. "Conditional generalized estimating equations of mean-variance-correlation for clustered data," Computational Statistics & Data Analysis, Elsevier, vol. 168(C).
    17. Zengri Wang & Thomas A. Louis, 2004. "Marginalized Binary Mixed-Effects Models with Covariate-Dependent Random Effects and Likelihood Inference," Biometrics, The International Biometric Society, vol. 60(4), pages 884-891, December.
    18. Xueying Zheng & Wing Fung & Zhongyi Zhu, 2013. "Robust estimation in joint mean–covariance regression model for longitudinal data," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 65(4), pages 617-638, August.
    19. Højsgaard, Søren & Halekoh, Ulrich & Yan, Jun, 2005. "The R Package geepack for Generalized Estimating Equations," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 15(i02).
    20. Wei Pan, 2001. "Model Selection in Estimating Equations," Biometrics, The International Biometric Society, vol. 57(2), pages 529-534, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:155:y:2021:i:c:s0167947320302012. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.