IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v53y2009i9p3334-3343.html
   My bibliography  Save this article

Effects of ignoring baseline on modeling transitions from intact cognition to dementia

Author

Listed:
  • Yu, Lei
  • Tyas, Suzanne L.
  • Snowdon, David A.
  • Kryscio, Richard J.

Abstract

This paper evaluates the effect of ignoring baseline when modeling transitions from intact cognition to dementia with mild cognitive impairment (MCI) and global impairment (GI) as intervening cognitive states. Transitions among states are modeled by a discrete-time Markov chain having three transient (intact cognition, MCI, and GI) and two competing absorbing states (death and dementia). Transition probabilities depend on two covariates, age and the presence/absence of an apolipoprotein E-[epsilon]4 allele, through a multinomial logistic model with shared random effects. Results are illustrated with an application to the Nun Study, a cohort of 678 participants 75+ years of age at baseline and followed longitudinally with up to ten cognitive assessments per nun.

Suggested Citation

  • Yu, Lei & Tyas, Suzanne L. & Snowdon, David A. & Kryscio, Richard J., 2009. "Effects of ignoring baseline on modeling transitions from intact cognition to dementia," Computational Statistics & Data Analysis, Elsevier, vol. 53(9), pages 3334-3343, July.
  • Handle: RePEc:eee:csdana:v:53:y:2009:i:9:p:3334-3343
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167-9473(09)00044-9
    Download Restriction: Full text for ScienceDirect subscribers only.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Saskia Litière & Ariel Alonso & Geert Molenberghs, 2007. "Type I and Type II Error Under Random-Effects Misspecification in Generalized Linear Mixed Models," Biometrics, The International Biometric Society, vol. 63(4), pages 1038-1044, December.
    2. R. Crouchley & R. B. Davies, 1999. "A comparison of population average and random‐effect models for the analysis of longitudinal count data with base‐line information," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 162(3), pages 331-347.
    3. Thomas R. Ten Have & Michael E. Miller & Beth A. Reboussin & Margaret K. James, 2000. "Mixed Effects Logistic Regression Models for Longitudinal Ordinal Functional Response Data with Multiple-Cause Drop-Out from the Longitudinal Study of Aging," Biometrics, The International Biometric Society, vol. 56(1), pages 279-287, March.
    4. Patrick J. Heagerty, 1999. "Marginally Specified Logistic-Normal Models for Longitudinal Binary Data," Biometrics, The International Biometric Society, vol. 55(3), pages 688-698, September.
    5. Thomas R. Ten Have & Beth A. Reboussin & Michael E. Miller & Allen Kunselman, 2002. "Mixed Effects Logistic Regression Models for Multiple Longitudinal Binary Functional Limitation Responses with Informative Drop-Out and Confounding by Baseline Outcomes," Biometrics, The International Biometric Society, vol. 58(1), pages 137-144, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wei, Shaoceng & Xu, Liou & Kryscio, Richard J., 2014. "Markov transition model to dementia with death as a competing event," Computational Statistics & Data Analysis, Elsevier, vol. 80(C), pages 78-88.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chan, Jennifer S.K. & Leung, Doris Y.P. & Boris Choy, S.T. & Wan, Wai Y., 2009. "Nonignorable dropout models for longitudinal binary data with random effects: An application of Monte Carlo approximation through the Gibbs output," Computational Statistics & Data Analysis, Elsevier, vol. 53(12), pages 4530-4545, October.
    2. Emilio Augusto Coelho-Barros & Jorge Alberto Achcar & Josmar Mazucheli, 2010. "Longitudinal Poisson modeling: an application for CD4 counting in HIV-infected patients," Journal of Applied Statistics, Taylor & Francis Journals, vol. 37(5), pages 865-880.
    3. Iddi Samuel & Nwoko Esther O., 2017. "Effect of covariate misspecifications in the marginalized zero-inflated Poisson model," Monte Carlo Methods and Applications, De Gruyter, vol. 23(2), pages 111-120, June.
    4. Francesco BARTOLUCCI & Silvia BACCI & Claudia PIGINI, 2015. "A Misspecification Test for Finite-Mixture Logistic Models for Clustered Binary and Ordered Responses," Working Papers 410, Universita' Politecnica delle Marche (I), Dipartimento di Scienze Economiche e Sociali.
    5. J. E. Mills & C. A. Field & D. J. Dupuis, 2002. "Marginally Specified Generalized Linear Mixed Models: A Robust Approach," Biometrics, The International Biometric Society, vol. 58(4), pages 727-734, December.
    6. Jason Roy & Michael J. Daniels, 2008. "A General Class of Pattern Mixture Models for Nonignorable Dropout with Many Possible Dropout Times," Biometrics, The International Biometric Society, vol. 64(2), pages 538-545, June.
    7. Huang, Xianzheng, 2011. "Detecting random-effects model misspecification via coarsened data," Computational Statistics & Data Analysis, Elsevier, vol. 55(1), pages 703-714, January.
    8. Yingye Zheng & Patrick J. Heagerty & Li Hsu & Polly A. Newcomb, 2010. "On Combining Family-Based and Population-Based Case–Control Data in Association Studies," Biometrics, The International Biometric Society, vol. 66(4), pages 1024-1033, December.
    9. Kenneth J. Wilkins & Garrett M. Fitzmaurice, 2006. "A Hybrid Model for Nonignorable Dropout in Longitudinal Binary Responses," Biometrics, The International Biometric Society, vol. 62(1), pages 168-176, March.
    10. Kim, Jung Seek & Ratchford, Brian T., 2013. "A Bayesian multivariate probit for ordinal data with semiparametric random-effects," Computational Statistics & Data Analysis, Elsevier, vol. 64(C), pages 192-208.
    11. Jonathan S. Schildcrout & Patrick J. Heagerty, 2007. "Marginalized Models for Moderate to Long Series of Longitudinal Binary Response Data," Biometrics, The International Biometric Society, vol. 63(2), pages 322-331, June.
    12. Miran A. Jaffa & Ayad A. Jaffa, 2019. "A Likelihood-Based Approach with Shared Latent Random Parameters for the Longitudinal Binary and Informative Censoring Processes," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 11(3), pages 597-613, December.
    13. Samuel Iddi & Geert Molenberghs, 2012. "A joint marginalized multilevel model for longitudinal outcomes," Journal of Applied Statistics, Taylor & Francis Journals, vol. 39(11), pages 2413-2430, July.
    14. Raymond J. Carroll, 2003. "Variances Are Not Always Nuisance Parameters," Biometrics, The International Biometric Society, vol. 59(2), pages 211-220, June.
    15. Jane Osburn, 2011. "A Latent Variable Approach to Examining the Effects of HR Policies on the Inter- and Intra-Establishment Wage and Employment Structure: A Study of Two Precision Manufacturing Industries," Working Papers 451, U.S. Bureau of Labor Statistics.
    16. Maria Marino & Alessio Farcomeni, 2015. "Linear quantile regression models for longitudinal experiments: an overview," METRON, Springer;Sapienza Università di Roma, vol. 73(2), pages 229-247, August.
    17. Peter McCullagh, 2008. "Sampling bias and logistic models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 70(4), pages 643-677, September.
    18. J. Perin & J. S. Preisser & C. Phillips & B. Qaqish, 2014. "Regression analysis of correlated ordinal data using orthogonalized residuals," Biometrics, The International Biometric Society, vol. 70(4), pages 902-909, December.
    19. Iddi, Samuel & Molenberghs, Geert, 2012. "A combined overdispersed and marginalized multilevel model," Computational Statistics & Data Analysis, Elsevier, vol. 56(6), pages 1944-1951.
    20. Keunbaik Lee & Michael J. Daniels, 2007. "A Class of Markov Models for Longitudinal Ordinal Data," Biometrics, The International Biometric Society, vol. 63(4), pages 1060-1067, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:53:y:2009:i:9:p:3334-3343. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.