IDEAS home Printed from https://ideas.repec.org/r/arx/papers/cond-mat-0207253.html
   My bibliography  Save this item

Dynamics of price and trading volume in a spin model of stock markets with heterogeneous agents

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Stefan Bornholdt, 2021. "A q-spin Potts model of markets: Gain-loss asymmetry in stock indices as an emergent phenomenon," Papers 2112.06290, arXiv.org.
  2. Theodosopoulos, Ted & Yuen, Ming, 2007. "Properties of the wealth process in a market microstructure model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 378(2), pages 443-452.
  3. Yue Chen & Xiaojian Niu & Yan Zhang, 2019. "Exploring Contrarian Degree in the Trading Behavior of China's Stock Market," Complexity, Hindawi, vol. 2019, pages 1-12, April.
  4. Ted Theodosopoulos, 2004. "Uncertainty relations in models of market microstructure," Papers math/0409076, arXiv.org, revised Feb 2005.
  5. Taisei Kaizoji, 2013. "Modelling of Stock Returns and Trading Volume," IIM Kozhikode Society & Management Review, , vol. 2(2), pages 147-155, July.
  6. Tetsuya Takaishi, 2014. "Analysis of Spin Financial Market by GARCH Model," Papers 1409.0118, arXiv.org.
  7. Kristoufek, Ladislav & Vošvrda, Miloslav S., 2016. "Herding, minority game, market clearing and efficient markets in a simple spin model framework," FinMaP-Working Papers 68, Collaborative EU Project FinMaP - Financial Distortions and Macroeconomic Performance: Expectations, Constraints and Interaction of Agents.
  8. Taisei Kaizoji, 2013. "Modeling of Stock Returns and Trading Volume," Papers 1309.2416, arXiv.org.
  9. Shi, Leilei, 2006. "Does security transaction volume–price behavior resemble a probability wave?," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 366(C), pages 419-436.
  10. Meudt, Frederik & Schmitt, Thilo A. & Schäfer, Rudi & Guhr, Thomas, 2016. "Equilibrium pricing in an order book environment: Case study for a spin model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 453(C), pages 228-235.
  11. Bargigli, Leonardo & Tedeschi, Gabriele, 2014. "Interaction in agent-based economics: A survey on the network approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 399(C), pages 1-15.
  12. Wagner, D.C. & Schmitt, T.A. & Schäfer, R. & Guhr, T. & Wolf, D.E., 2014. "Analysis of a decision model in the context of equilibrium pricing and order book pricing," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 415(C), pages 347-353.
  13. Kukacka, Jiri & Barunik, Jozef, 2013. "Behavioural breaks in the heterogeneous agent model: The impact of herding, overconfidence, and market sentiment," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(23), pages 5920-5938.
  14. Ryuichi Yamamoto, 2011. "Volatility clustering and herding agents: does it matter what they observe?," Journal of Economic Interaction and Coordination, Springer;Society for Economic Science with Heterogeneous Interacting Agents, vol. 6(1), pages 41-59, May.
  15. Sornette, Didier & Zhou, Wei-Xing, 2006. "Importance of positive feedbacks and overconfidence in a self-fulfilling Ising model of financial markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 370(2), pages 704-726.
  16. D. Sornette, 2014. "Physics and Financial Economics (1776-2014): Puzzles, Ising and Agent-Based models," Papers 1404.0243, arXiv.org.
  17. Krause, Sebastian M. & Bornholdt, Stefan, 2013. "Spin models as microfoundation of macroscopic market models," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(18), pages 4048-4054.
  18. Jørgen Vitting Andersen & Ioannis Vrontos & Petros Dellaportas & Serge Galam, 2014. "Communication impacting financial markets," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) hal-01215750, HAL.
  19. Marcin Wk{a}torek & Jaros{l}aw Kwapie'n & Stanis{l}aw Dro.zd.z, 2021. "Financial Return Distributions: Past, Present, and COVID-19," Papers 2107.06659, arXiv.org.
  20. Theodosopoulos, Ted & Boyer, Robert, 2007. "Periodic attractors of random truncator maps," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 382(1), pages 302-310.
  21. Horvath, Philip A. & Roos, Kelly R. & Sinha, Amit, 2016. "An Ising spin state explanation for financial asset allocation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 445(C), pages 112-116.
  22. Ted Theodosopoulos & Ming Yuen, 2005. "Properties of the wealth process in a market microstructure model," Papers math/0502105, arXiv.org, revised Feb 2005.
  23. Zubillaga, Bernardo J. & Vilela, André L.M. & Wang, Chao & Nelson, Kenric P. & Stanley, H. Eugene, 2022. "A three-state opinion formation model for financial markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 588(C).
  24. Marco Airoldi & Vito Antonelli & Bruno Bassetti & Andrea Martinelli & Marco Picariello, 2004. "Long Range Interaction Generating Fat-Tails in Finance," GE, Growth, Math methods 0404006, University Library of Munich, Germany, revised 27 Apr 2004.
  25. Quanbo Zha & Gang Kou & Hengjie Zhang & Haiming Liang & Xia Chen & Cong-Cong Li & Yucheng Dong, 2020. "Opinion dynamics in finance and business: a literature review and research opportunities," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 6(1), pages 1-22, December.
  26. Yamamoto, Ryuichi, 2011. "Order aggressiveness, pre-trade transparency, and long memory in an order-driven market," Journal of Economic Dynamics and Control, Elsevier, vol. 35(11), pages 1938-1963.
  27. Didier SORNETTE, 2014. "Physics and Financial Economics (1776-2014): Puzzles, Ising and Agent-Based Models," Swiss Finance Institute Research Paper Series 14-25, Swiss Finance Institute.
  28. Samar K. Guharay & Gaurav S. Thakur & Fred J. Goodman & Scott L. Rosen & Daniel Houser, 2016. "Integrated data-driven analytics to identify instability signatures in nonstationary financial time series," Applied Economics, Taylor & Francis Journals, vol. 48(18), pages 1678-1694, April.
  29. Tetsuya Takaishi, 2008. "Financial Time Series Analysis of SV Model by Hybrid Monte Carlo," Papers 0807.4394, arXiv.org.
  30. Kyrylo Shmatov & Mikhail Smirnov, 2005. "On Some Processes and Distributions in a Collective Model of Investors' Behavior," Papers nlin/0506015, arXiv.org.
  31. Lux, Thomas & Alfarano, Simone, 2016. "Financial power laws: Empirical evidence, models, and mechanisms," Chaos, Solitons & Fractals, Elsevier, vol. 88(C), pages 3-18.
  32. Maximilian Beikirch & Simon Cramer & Martin Frank & Philipp Otte & Emma Pabich & Torsten Trimborn, 2020. "Robust Mathematical Formulation And Probabilistic Description Of Agent-Based Computational Economic Market Models," Advances in Complex Systems (ACS), World Scientific Publishing Co. Pte. Ltd., vol. 23(06), pages 1-41, September.
  33. Tetsuya Takaishi, 2009. "An Adaptive Markov Chain Monte Carlo Method for GARCH Model," Papers 0901.0992, arXiv.org.
  34. Torsten Trimborn & Philipp Otte & Simon Cramer & Max Beikirch & Emma Pabich & Martin Frank, 2018. "SABCEMM-A Simulator for Agent-Based Computational Economic Market Models," Papers 1801.01811, arXiv.org, revised Oct 2018.
  35. Frederik Meudt & Thilo A. Schmitt & Rudi Schafer & Thomas Guhr, 2015. "Equilibrium Pricing in an Order Book Environment: Case Study for a Spin Model," Papers 1502.01125, arXiv.org.
  36. Tetsuya Takaishi, 2016. "Dynamical cross-correlation of multiple time series Ising model," Evolutionary and Institutional Economics Review, Springer, vol. 13(2), pages 455-468, December.
  37. Stefan, F.M. & Atman, A.P.F., 2023. "Asymmetric rate of returns and wealth distribution influenced by the introduction of technical analysis into a behavioral agent-based model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 630(C).
  38. Daniel C. Wagner & Thilo A. Schmitt & Rudi Schafer & Thomas Guhr & Dietrich E. Wolf, 2014. "Analysis of a decision model in the context of equilibrium pricing and order book pricing," Papers 1404.7356, arXiv.org.
  39. Kei Katahira & Yu Chen, 2019. "Heterogeneous wealth distribution, round-trip trading and the emergence of volatility clustering in Speculation Game," Papers 1909.03185, arXiv.org.
  40. Kei Katahira & Yu Chen & Gaku Hashimoto & Hiroshi Okuda, 2019. "Development of an agent-based speculation game for higher reproducibility of financial stylized facts," Papers 1902.02040, arXiv.org.
  41. Yuichi Ikeda, 2020. "An Interacting Agent Model of Economic Crisis," Papers 2001.11843, arXiv.org.
  42. Veglio, A. & Marsili, M., 2007. "Stochastic analysis of an agent-based model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 385(2), pages 631-636.
  43. Simon Cramer & Torsten Trimborn, 2019. "Stylized Facts and Agent-Based Modeling," Papers 1912.02684, arXiv.org.
  44. Katahira, Kei & Chen, Yu & Hashimoto, Gaku & Okuda, Hiroshi, 2019. "Development of an agent-based speculation game for higher reproducibility of financial stylized facts," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 524(C), pages 503-518.
  45. Torsten Trimborn & Philipp Otte & Simon Cramer & Maximilian Beikirch & Emma Pabich & Martin Frank, 2020. "SABCEMM: A Simulator for Agent-Based Computational Economic Market Models," Computational Economics, Springer;Society for Computational Economics, vol. 55(2), pages 707-744, February.
  46. Ted Theodosopoulos & Ming Yuen, 2006. "Imbalance attractors for a strategic model of market microstructure," Papers math/0605421, arXiv.org.
  47. Cross, Rod & Grinfeld, Michael & Lamba, Harbir & Seaman, Tim, 2005. "A threshold model of investor psychology," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 354(C), pages 463-478.
  48. IKEDA Yuichi & YOSHIKAWA Hiroshi, 2018. "Macroprudential Modeling Based on Spin Dynamics in a Supply Chain Network," Discussion papers 18045, Research Institute of Economy, Trade and Industry (RIETI).
  49. Maximilian Beikirch & Simon Cramer & Martin Frank & Philipp Otte & Emma Pabich & Torsten Trimborn, 2019. "Robust Mathematical Formulation and Probabilistic Description of Agent-Based Computational Economic Market Models," Papers 1904.04951, arXiv.org, revised Mar 2021.
  50. Bornholdt, Stefan, 2022. "A q-spin Potts model of markets: Gain–loss asymmetry in stock indices as an emergent phenomenon," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 588(C).
  51. Theodosopoulos, Ted, 2005. "Uncertainty relations in models of market microstructure," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 355(1), pages 209-216.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.