Automatic Debiased Machine Learning of Causal and Structural Effects
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Jikai Jin & Vasilis Syrgkanis, 2024. "Structure-agnostic Optimality of Doubly Robust Learning for Treatment Effect Estimation," Papers 2402.14264, arXiv.org, revised Jun 2025.
- Kyle Colangelo & Ying-Ying Lee, 2020. "Double Debiased Machine Learning Nonparametric Inference with Continuous Treatments," Papers 2004.03036, arXiv.org, revised Sep 2023.
- Liu, Lin & Mukherjee, Rajarshi & Robins, James M., 2024. "Assumption-lean falsification tests of rate double-robustness of double-machine-learning estimators," Journal of Econometrics, Elsevier, vol. 240(2).
- TELLO, Mario D., 2024. "Inversión Pública En Infraestructura Y Crecimiento Regional En Perú, 2005-2020: Un Análisis Basado En Técnicas De Aprendizaje Automático Causal," Regional and Sectoral Economic Studies, Euro-American Association of Economic Development, vol. 24(2), pages 195-222.
- Sören Blomquist & Jerry A. Hausman & Whitney K. Newey, 2023. "The Econometrics of Nonlinear Budget Sets," Annual Review of Economics, Annual Reviews, vol. 15(1), pages 287-306, September.
- Julius Schaper, 2025. "Residualised Treatment Intensity and the Estimation of Average Partial Effects," Papers 2502.10301, arXiv.org.
- Semenova, Vira, 2025. "Generalized Lee bounds," Journal of Econometrics, Elsevier, vol. 251(C).
- Newham, Melissa & Valente, Marica, 2024.
"The cost of influence: How gifts to physicians shape prescriptions and drug costs,"
Journal of Health Economics, Elsevier, vol. 95(C).
- Melissa Newham & Marica Valente, 2022. "The Cost of Influence: How Gifts to Physicians Shape Prescriptions and Drug Costs," Papers 2203.01778, arXiv.org, revised Apr 2023.
- Melissa Newham & Marica Valente, 2023. "The Cost of Influence:How Gifts to Physicians Shape Prescriptions and Drug Costs," Working Papers 2023-03, Faculty of Economics and Statistics, Universität Innsbruck.
- Zhan Gao & Ji Hyung Lee & Ziwei Mei & Zhentao Shi, 2024. "LASSO Inference for High Dimensional Predictive Regressions," Papers 2409.10030, arXiv.org, revised Jan 2026.
- Jing Kong, 2025. "Causal Inference in High-Dimensional Generalized Linear Models with Binary Outcomes," Papers 2510.16669, arXiv.org.
- Jin, Zequn & Sun, Jisheng, 2025. "Neyman-orthogonal moment for instrumental variable quantile regression model with high dimensional data," Economics Letters, Elsevier, vol. 253(C).
- Helena Chuliá & Sabuhi Khalili & Jorge M. Uribe, 2024. "Monitoring time-varying systemic risk in sovereign debt and currency markets with generative AI," IREA Working Papers 202402, University of Barcelona, Research Institute of Applied Economics, revised Feb 2024.
- Christoph Breunig & Ruixuan Liu & Zhengfei Yu, 2025. "Robust Semiparametric Inference for Bayesian Additive Regression Trees," Papers 2509.24634, arXiv.org, revised Oct 2025.
- Michael Lechner & Jana Mareckova, 2024. "Comprehensive Causal Machine Learning," Papers 2405.10198, arXiv.org, revised Feb 2025.
- Soren Blomquist & Anil Kumar & Che-Yuan Liang & Whitney K. Newey, 2022.
"Nonlinear Budget Set Regressions for the Random Utility Model,"
Working Papers
2219, Federal Reserve Bank of Dallas.
- Sören Blomquist & Anil Kumar & Che-Yuan Liang & Whitney Newey, 2023. "Nonlinear Budget Set Regressions for the Random Utility Model," NBER Working Papers 31194, National Bureau of Economic Research, Inc.
- Paul S. Clarke & Annalivia Polselli, 2023. "Double Machine Learning for Static Panel Models with Fixed Effects," Papers 2312.08174, arXiv.org, revised Dec 2024.
- Alejandro Sanchez-Becerra, 2023. "Robust inference for the treatment effect variance in experiments using machine learning," Papers 2306.03363, arXiv.org.
- Victor Chernozhukov & Whitney K. Newey & Rahul Singh, 2022.
"Automatic Debiased Machine Learning of Causal and Structural Effects,"
Econometrica, Econometric Society, vol. 90(3), pages 967-1027, May.
- Victor Chernozhukov & Whitney K Newey & Rahul Singh, 2018. "Automatic Debiased Machine Learning of Causal and Structural Effects," Papers 1809.05224, arXiv.org, revised Oct 2022.
- Yikun Zhang & Yen-Chi Chen, 2025. "Doubly Robust Inference on Causal Derivative Effects for Continuous Treatments," Papers 2501.06969, arXiv.org, revised Apr 2025.
- Soren Blomquist & Anil Kumar & Whitney K. Newey, 2024. "Panel Estimation of Taxable Income Elasticities with Heterogeneity and Endogenous Budget Sets," Papers 2501.00633, arXiv.org.
- Amandeep Singh & Ye Liu & Hema Yoganarasimhan, 2023. "Choice Models and Permutation Invariance: Demand Estimation in Differentiated Products Markets," Papers 2307.07090, arXiv.org, revised Feb 2024.
- Zhengyu Zhang & Zequn Jin & Lihua Lin, 2024. "Identification and inference of outcome conditioned partial effects of general interventions," Papers 2407.16950, arXiv.org.
- Amarendra Sharma, 2025. "P-CRE-DML: A Novel Approach for Causal Inference in Non-Linear Panel Data," Papers 2506.23297, arXiv.org.
- Esfandiar Maasoumi & Jianqiu Wang & Zhuo Wang & Ke Wu, 2024. "Identifying factors via automatic debiased machine learning," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 39(3), pages 438-461, April.
- Manu Navjeevan, 2023. "An Identification and Dimensionality Robust Test for Instrumental Variables Models," Papers 2311.14892, arXiv.org, revised Dec 2024.
- Juan Carlos Escanciano & Telmo P'erez-Izquierdo, 2023. "Automatic Debiased Estimation with Machine Learning-Generated Regressors," Papers 2301.10643, arXiv.org, revised May 2025.
- Zequn Jin & Lihua Lin & Zhengyu Zhang, 2022. "Identification and Auto-debiased Machine Learning for Outcome Conditioned Average Structural Derivatives," Papers 2211.07903, arXiv.org.
- Jikai Jin & Lester Mackey & Vasilis Syrgkanis, 2025. "It's Hard to Be Normal: The Impact of Noise on Structure-agnostic Estimation," Papers 2507.02275, arXiv.org, revised Nov 2025.
- Paul Goldsmith-Pinkham & Peter Hull & Michal Kolesár, 2024.
"Contamination Bias in Linear Regressions,"
American Economic Review, American Economic Association, vol. 114(12), pages 4015-4051, December.
- Paul Goldsmith-Pinkham & Peter Hull & Michal Koles'ar, 2021. "Contamination Bias in Linear Regressions," Papers 2106.05024, arXiv.org, revised Jun 2024.
- Paul Goldsmith-Pinkham & Peter Hull & Michal Kolesár, 2022. "Contamination Bias in Linear Regressions," Working Papers 2022-15, Princeton University. Economics Department..
- Paul Goldsmith-Pinkham & Peter Hull & Michal Kolesár, 2022. "Contamination Bias in Linear Regressions," NBER Working Papers 30108, National Bureau of Economic Research, Inc.
- Jing Kong, 2025. "On the Asymptotics of the Minimax Linear Estimator," Papers 2510.16661, arXiv.org.
- Manu Navjeevan & Rodrigo Pinto & Andres Santos, 2023. "Identification and Estimation in a Class of Potential Outcomes Models," Papers 2310.05311, arXiv.org.
- Gyungbae Park, 2024. "Debiased Machine Learning when Nuisance Parameters Appear in Indicator Functions," Papers 2403.15934, arXiv.org, revised Mar 2025.
- Michael Lechner, 2023. "Causal Machine Learning and its use for public policy," Swiss Journal of Economics and Statistics, Springer;Swiss Society of Economics and Statistics, vol. 159(1), pages 1-15, December.
- Fabian Muny, 2025. "Evaluating Program Sequences with Double Machine Learning: An Application to Labor Market Policies," Papers 2506.11960, arXiv.org.
- Geonwoo Kim & Suyong Song, 2024. "Double/Debiased CoCoLASSO of Treatment Effects with Mismeasured High-Dimensional Control Variables," Papers 2408.14671, arXiv.org.
- Philipp Bach & Victor Chernozhukov & Carlos Cinelli & Lin Jia & Sven Klaassen & Nils Skotara & Martin Spindler, 2025. "Sensitivity Analysis for Causal ML: A Use Case at Booking.com," Papers 2510.09109, arXiv.org.
- Chenyu Hou, 2023. "Learning and Subjective Expectation Formation: A Recurrent Neural Network Approach," Discussion Papers dp23-13, Department of Economics, Simon Fraser University.
- Ganesh Karapakula, 2023. "Stable Probability Weighting: Large-Sample and Finite-Sample Estimation and Inference Methods for Heterogeneous Causal Effects of Multivalued Treatments Under Limited Overlap," Papers 2301.05703, arXiv.org, revised Jan 2023.
- Paul Goldsmith-Pinkham & Peter Hull & Michal Kolesár, 2021. "On Estimating Multiple Treatment Effects with Regression," Working Papers 2021-41, Princeton University. Economics Department..
- Yuya Sasaki & Takuya Ura & Yichong Zhang, 2022.
"Unconditional quantile regression with high‐dimensional data,"
Quantitative Economics, Econometric Society, vol. 13(3), pages 955-978, July.
- Yuya Sasaki & Takuya Ura & Yichong Zhang, 2020. "Unconditional Quantile Regression with High Dimensional Data," Papers 2007.13659, arXiv.org, revised Feb 2022.
- Sven Klaassen & Jan Rabenseifner & Jannis Kueck & Philipp Bach, 2025. "Calibration Strategies for Robust Causal Estimation: Theoretical and Empirical Insights on Propensity Score-Based Estimators," Papers 2503.17290, arXiv.org, revised May 2025.
- Jonathan Fuhr & Dominik Papies, 2024. "Double Machine Learning meets Panel Data -- Promises, Pitfalls, and Potential Solutions," Papers 2409.01266, arXiv.org.
- Zhang, Jeffrey & Li, Wei & Miao, Wang & Tchetgen Tchetgen, Eric, 2023. "Proximal causal inference without uniqueness assumptions," Statistics & Probability Letters, Elsevier, vol. 198(C).
Printed from https://ideas.repec.org/r/arx/papers/1809.05224.html