My bibliography
Save this item
Heston Stochastic Vol-of-Vol Model for Joint Calibration of VIX and S&P 500 Options
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- repec:hal:wpaper:hal-03902513 is not listed on IDEAS
- Alghalith, Moawia, 2020. "Pricing options under simultaneous stochastic volatility and jumps: A simple closed-form formula without numerical/computational methods," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 540(C).
- Florian Bourgey & Stefano De Marco & Emmanuel Gobet, 2022. "Weak approximations and VIX option price expansions in forward variance curve models," Papers 2202.10413, arXiv.org, revised May 2022.
- Eduardo Abi Jaber & Camille Illand & Shaun & Li, 2022. "Joint SPX-VIX calibration with Gaussian polynomial volatility models: deep pricing with quantization hints," Papers 2212.08297, arXiv.org, revised Dec 2024.
- Giulia Di Nunno & Kęstutis Kubilius & Yuliya Mishura & Anton Yurchenko-Tytarenko, 2023. "From Constant to Rough: A Survey of Continuous Volatility Modeling," Mathematics, MDPI, vol. 11(19), pages 1-35, October.
- Jaegi Jeon & Geonwoo Kim & Jeonggyu Huh, 2021. "Consistent and efficient pricing of SPX and VIX options under multiscale stochastic volatility," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 41(5), pages 559-576, May.
- Andrea Barletta & Elisa Nicolato & Stefano Pagliarani, 2019. "The short‐time behavior of VIX‐implied volatilities in a multifactor stochastic volatility framework," Mathematical Finance, Wiley Blackwell, vol. 29(3), pages 928-966, July.
- Eduardo Abi Jaber & Camille Illand & Shaun & Li, 2022. "The quintic Ornstein-Uhlenbeck volatility model that jointly calibrates SPX & VIX smiles," Papers 2212.10917, arXiv.org, revised May 2023.
- Antoine Jacquier & Adriano Oliveri Orioles & Zan Zuric, 2025. "Rough Bergomi turns grey," Papers 2505.08623, arXiv.org.
- Guido Gazzani & Julien Guyon, 2024. "Pricing and calibration in the 4-factor path-dependent volatility model," Papers 2406.02319, arXiv.org, revised Feb 2025.
- Young Shin Kim & Kum-Hwan Roh & Raphael Douady, 2022.
"Tempered stable processes with time-varying exponential tails,"
Quantitative Finance, Taylor & Francis Journals, vol. 22(3), pages 541-561, March.
- Young Shin Kim & Kum-Hwan Roh & Raphael Douady, 2020. "Tempered Stable Processes with Time Varying Exponential Tails," Papers 2006.07669, arXiv.org, revised Aug 2020.
- Raphaël Douady & Young Shin Kim & Kum-Hwan Roh, 2021. "Tempered stable processes with time-varying exponential tails," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) hal-03512709, HAL.
- Young Shin Aaron Kim & Kum-Hwan Roh & Raphaël Douady, 2020. "Tempered Stable Processes with Time Varying Exponential Tails," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) hal-03018495, HAL.
- Raphaël Douady & Young Shin Kim & Kum-Hwan Roh, 2021. "Tempered stable processes with time-varying exponential tails," Post-Print hal-03512709, HAL.
- Young Shin Aaron Kim & Kum-Hwan Roh & Raphaël Douady, 2020. "Tempered Stable Processes with Time Varying Exponential Tails," Working Papers hal-03018495, HAL.
- Tong, Zhigang & Liu, Allen, 2022. "Pricing variance swaps under subordinated Jacobi stochastic volatility models," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 593(C).
- Jaegi Jeon & Geonwoo Kim & Jeonggyu Huh, 2019. "Consistent and Efficient Pricing of SPX and VIX Options under Multiscale Stochastic Volatility," Papers 1909.10187, arXiv.org.
- Ivan Guo & Gregoire Loeper & Jan Obloj & Shiyi Wang, 2020. "Joint Modelling and Calibration of SPX and VIX by Optimal Transport," Papers 2004.02198, arXiv.org, revised Sep 2021.
- Alexandre Pannier, 2023. "Path-dependent PDEs for volatility derivatives," Papers 2311.08289, arXiv.org, revised Jul 2025.
- Ballotta, Laura & Rayée, Grégory, 2022. "Smiles & smirks: Volatility and leverage by jumps," European Journal of Operational Research, Elsevier, vol. 298(3), pages 1145-1161.
- Julien Guyon, 2020. "Inversion of convex ordering in the VIX market," Quantitative Finance, Taylor & Francis Journals, vol. 20(10), pages 1597-1623, October.
- Lech A. Grzelak, 2022. "On Randomization of Affine Diffusion Processes with Application to Pricing of Options on VIX and S&P 500," Papers 2208.12518, arXiv.org.
- repec:hal:wpaper:hal-03909334 is not listed on IDEAS
- Christa Cuchiero & Guido Gazzani & Janka Moller & Sara Svaluto-Ferro, 2023. "Joint calibration to SPX and VIX options with signature-based models," Papers 2301.13235, arXiv.org, revised Jul 2024.
- Julien Guyon, 2024. "Dispersion-constrained martingale Schrödinger problems and the exact joint S&P 500/VIX smile calibration puzzle," Finance and Stochastics, Springer, vol. 28(1), pages 27-79, January.
- Giulia Di Nunno & Kk{e}stutis Kubilius & Yuliya Mishura & Anton Yurchenko-Tytarenko, 2023. "From constant to rough: A survey of continuous volatility modeling," Papers 2309.01033, arXiv.org, revised Aug 2025.
- Misha Beek & Michel Mandjes & Peter Spreij & Erik Winands, 2020. "Regime switching affine processes with applications to finance," Finance and Stochastics, Springer, vol. 24(2), pages 309-333, April.
- Min-Ku Lee & See-Woo Kim & Jeong-Hoon Kim, 2022. "Variance Swaps Under Multiscale Stochastic Volatility of Volatility," Methodology and Computing in Applied Probability, Springer, vol. 24(1), pages 39-64, March.
- Zhiqiang Zhou & Wei Xu & Alexey Rubtsov, 2024. "Joint calibration of S&P 500 and VIX options under local stochastic volatility models," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 29(1), pages 273-310, January.
- Antoine Jacquier & Aitor Muguruza & Alexandre Pannier, 2021. "Rough multifactor volatility for SPX and VIX options," Papers 2112.14310, arXiv.org, revised Nov 2023.
- Julien Guyon & Jordan Lekeufack, 2023. "Volatility is (mostly) path-dependent," Quantitative Finance, Taylor & Francis Journals, vol. 23(9), pages 1221-1258, September.
- Andrew Papanicolaou, 2022. "Consistent time‐homogeneous modeling of SPX and VIX derivatives," Mathematical Finance, Wiley Blackwell, vol. 32(3), pages 907-940, July.
- Liexin Cheng & Xue Cheng & Xianhua Peng, 2024. "Joint Calibration to SPX and VIX Derivative Markets with Composite Change of Time Models," Papers 2404.16295, arXiv.org, revised Aug 2024.
- Eduardo Abi Jaber & Camille Illand & Shaun Xiaoyuan Li, 2023. "The quintic Ornstein-Uhlenbeck volatility model that jointly calibrates SPX & VIX smiles," Post-Print hal-03909334, HAL.
Printed from https://ideas.repec.org/r/arx/papers/1706.00873.html