IDEAS home Printed from https://ideas.repec.org/p/zbw/sfb649/sfb649dp2006-010.html

Common functional principal components

Author

Listed:
  • Benko, Michal
  • Härdle, Wolfgang Karl
  • Kneip, Alois

Abstract

Functional principal component analysis (FPCA) based on the Karhunen-Loève decomposition has been successfully applied in many applications, mainly for one sample problems. In this paper we consider common functional principal components for two sample problems. Our research is motivated not only by the theoretical challenge of this data situation but also by the actual question of dynamics of implied volatility (IV) functions. For different maturities the logreturns of IVs are samples of (smooth) random functions and the methods proposed here study the similarities of their stochastic behavior. Firstly we present a new method for estimation of functional principal components from discrete noisy data. Next we present the two sample inference for FPCA and develop two sample theory. We propose bootstrap tests for testing the equality of eigenvalues, eigenfunctions, and mean functions of two functional samples, illustrate the test-properties by simulation study and apply the method to the IV analysis.

Suggested Citation

  • Benko, Michal & Härdle, Wolfgang Karl & Kneip, Alois, 2006. "Common functional principal components," SFB 649 Discussion Papers 2006-010, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
  • Handle: RePEc:zbw:sfb649:sfb649dp2006-010
    as

    Download full text from publisher

    File URL: https://www.econstor.eu/bitstream/10419/25093/1/512461546.PDF
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Fengler, Matthias R. & Härdle, Wolfgang & Mammen, Enno, 2003. "Implied volatility string dynamics," SFB 373 Discussion Papers 2003,54, Humboldt University of Berlin, Interdisciplinary Research Project 373: Quantification and Simulation of Economic Processes.
    2. Matthias Fengler & Wolfgang Härdle & Christophe Villa, 2003. "The Dynamics of Implied Volatilities: A Common Principal Components Approach," Review of Derivatives Research, Springer, vol. 6(3), pages 179-202, October.
    3. Black, Fischer & Scholes, Myron S, 1973. "The Pricing of Options and Corporate Liabilities," Journal of Political Economy, University of Chicago Press, vol. 81(3), pages 637-654, May-June.
    4. Kneip A. & Utikal K. J, 2001. "Inference for Density Families Using Functional Principal Component Analysis," Journal of the American Statistical Association, American Statistical Association, vol. 96, pages 519-542, June.
    5. Dauxois, J. & Pousse, A. & Romain, Y., 1982. "Asymptotic theory for the principal component analysis of a vector random function: Some applications to statistical inference," Journal of Multivariate Analysis, Elsevier, vol. 12(1), pages 136-154, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. repec:hum:wpaper:sfb649dp2006-010 is not listed on IDEAS
    2. repec:hum:wpaper:sfb649dp2005-016 is not listed on IDEAS
    3. Bernales, Alejandro & Guidolin, Massimo, 2014. "Can we forecast the implied volatility surface dynamics of equity options? Predictability and economic value tests," Journal of Banking & Finance, Elsevier, vol. 46(C), pages 326-342.
    4. Bernd Engelmann & Matthias Fengler & Morten Nalholm & Peter Schwendner, 2006. "Static versus dynamic hedges: an empirical comparison for barrier options," Review of Derivatives Research, Springer, vol. 9(3), pages 239-264, November.
    5. Kneip, Alois & Benko, Michal, 2005. "Common functional component modelling," SFB 649 Discussion Papers 2005-016, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    6. Michel van der Wel & Sait R. Ozturk & Dick van Dijk, 2015. "Dynamic Factor Models for the Volatility Surface," CREATES Research Papers 2015-13, Department of Economics and Business Economics, Aarhus University.
    7. Kearney, Fearghal & Shang, Han Lin & Sheenan, Lisa, 2019. "Implied volatility surface predictability: The case of commodity markets," Journal of Banking & Finance, Elsevier, vol. 108(C).
    8. repec:hum:wpaper:sfb649dp2007-023 is not listed on IDEAS
    9. Hanousek, Jan & Novotný, Jan, 2012. "Price jumps in Visegrad-country stock markets: An empirical analysis," Emerging Markets Review, Elsevier, vol. 13(2), pages 184-201.
    10. repec:hum:wpaper:sfb649dp2010-039 is not listed on IDEAS
    11. Andrii Babii & Eric Ghysels & Junsu Pan, 2022. "Tensor PCA for Factor Models," Papers 2212.12981, arXiv.org, revised Mar 2025.
    12. repec:hum:wpaper:sfb649dp2005-020 is not listed on IDEAS
    13. repec:hum:wpaper:sfb649dp2005-019 is not listed on IDEAS
    14. Gang Li & Chu Zhang, 2010. "On the Number of State Variables in Options Pricing," Management Science, INFORMS, vol. 56(11), pages 2058-2075, November.
    15. Guidolin, Massimo & Wang, Kai, 2023. "The empirical performance of option implied volatility surface-driven optimal portfolios," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 618(C).
    16. Fengler, Matthias R. & Härdle, Wolfgang & Mammen, Enno, 2003. "Implied volatility string dynamics," SFB 373 Discussion Papers 2003,54, Humboldt University of Berlin, Interdisciplinary Research Project 373: Quantification and Simulation of Economic Processes.
    17. He, Xin-Jiang & Zhu, Song-Ping, 2017. "How should a local regime-switching model be calibrated?," Journal of Economic Dynamics and Control, Elsevier, vol. 78(C), pages 149-163.
    18. Čίžek, Pavel & Komorád, Karel, 2005. "Implied trinomial trees," SFB 649 Discussion Papers 2005-007, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    19. Kehui Chen & Xiaoke Zhang & Alexander Petersen & Hans-Georg Müller, 2017. "Quantifying Infinite-Dimensional Data: Functional Data Analysis in Action," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 9(2), pages 582-604, December.
    20. Wallmeier, Martin, 2012. "Smile in Motion: An Intraday Analysis of Asymmetric Implied Volatility," FSES Working Papers 427, Faculty of Economics and Social Sciences, University of Freiburg/Fribourg Switzerland.
    21. repec:hum:wpaper:sfb649dp2010-021 is not listed on IDEAS
    22. Han Shang, 2014. "A survey of functional principal component analysis," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 98(2), pages 121-142, April.
    23. Matthias Fengler & Wolfgang Härdle & Christophe Villa, 2003. "The Dynamics of Implied Volatilities: A Common Principal Components Approach," Review of Derivatives Research, Springer, vol. 6(3), pages 179-202, October.
    24. van der Linde, Angelika, 2008. "Variational Bayesian functional PCA," Computational Statistics & Data Analysis, Elsevier, vol. 53(2), pages 517-533, December.
    25. Laurini, Márcio P., 2007. "Imposing No-Arbitrage Conditions In Implied Volatility Surfaces Using Constrained Smoothing Splines," Insper Working Papers wpe_89, Insper Working Paper, Insper Instituto de Ensino e Pesquisa.
    26. Fengler, Matthias R. & Wang, Qihua, 2003. "Fitting the Smile Revisited: A Least Squares Kernel Estimator for the Implied Volatility Surface," SFB 373 Discussion Papers 2003,25, Humboldt University of Berlin, Interdisciplinary Research Project 373: Quantification and Simulation of Economic Processes.
    27. Bo Zhao & Stewart Hodges, 2013. "Parametric modeling of implied smile functions: a generalized SVI model," Review of Derivatives Research, Springer, vol. 16(1), pages 53-77, April.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:zbw:sfb649:sfb649dp2006-010. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ZBW - Leibniz Information Centre for Economics (email available below). General contact details of provider: https://edirc.repec.org/data/sohubde.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.