IDEAS home Printed from
   My bibliography  Save this paper

Is double trouble? How to combine cointegration tests


  • Bayer, Christian
  • Hanck, Christoph


This paper suggests a combination procedure to exploit the imperfect correlation of cointegration tests to develop a more powerful meta test. To exemplify, we combine Engle and Granger (1987) and Johansen (1988) tests. Either of these underlying tests can be more powerful than the other one depending on the nature of the data-generating process. The new meta test is at least as powerful as the more powerful one of the underlying tests irrespective of the very nature of the data generating process. At the same time, our new meta test avoids the size distortion inherent in separately applying multiple tests for cointegration to the same data set.

Suggested Citation

  • Bayer, Christian & Hanck, Christoph, 2008. "Is double trouble? How to combine cointegration tests," Technical Reports 2008,10, Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen.
  • Handle: RePEc:zbw:sfb475:200810

    Download full text from publisher

    File URL:
    Download Restriction: no

    Other versions of this item:

    References listed on IDEAS

    1. Anders Rygh Swensen, 2006. "Bootstrap Algorithms for Testing and Determining the Cointegration Rank in VAR Models -super-1," Econometrica, Econometric Society, vol. 74(6), pages 1699-1714, November.
    2. Engle, Robert & Granger, Clive, 2015. "Co-integration and error correction: Representation, estimation, and testing," Applied Econometrics, Publishing House "SINERGIA PRESS", vol. 39(3), pages 106-135.
    3. Bénédicte Vidaillet & V. D'Estaintot & P. Abécassis, 2005. "Introduction," Post-Print hal-00287137, HAL.
    4. Matei Demetrescu & Uwe Hassler & Adina-Ioana Tarcolea, 2006. "Combining Significance of Correlated Statistics with Application to Panel Data," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 68(5), pages 647-663, October.
    5. repec:bla:restud:v:57:y:1990:i:1:p:99-125 is not listed on IDEAS
    6. Efstathios Paparoditis & Dimitris N. Politis, 2003. "Residual-Based Block Bootstrap for Unit Root Testing," Econometrica, Econometric Society, vol. 71(3), pages 813-855, May.
    7. Hansen, Bruce E., 1992. "Efficient estimation and testing of cointegrating vectors in the presence of deterministic trends," Journal of Econometrics, Elsevier, vol. 53(1-3), pages 87-121.
    8. Johansen, Soren, 1991. "Estimation and Hypothesis Testing of Cointegration Vectors in Gaussian Vector Autoregressive Models," Econometrica, Econometric Society, vol. 59(6), pages 1551-1580, November.
    9. Gonzalo, Jesus, 1994. "Five alternative methods of estimating long-run equilibrium relationships," Journal of Econometrics, Elsevier, vol. 60(1-2), pages 203-233.
    10. MacKinnon, James G, 1996. "Numerical Distribution Functions for Unit Root and Cointegration Tests," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 11(6), pages 601-618, Nov.-Dec..
    11. Phillips, Peter C B & Ouliaris, S, 1990. "Asymptotic Properties of Residual Based Tests for Cointegration," Econometrica, Econometric Society, vol. 58(1), pages 165-193, January.
    12. Johansen, Soren, 1988. "Statistical analysis of cointegration vectors," Journal of Economic Dynamics and Control, Elsevier, vol. 12(2-3), pages 231-254.
    13. Allan W. Gregory & Alfred A. Haug & Nicoletta Lomuto, 2004. "Mixed signals among tests for cointegration," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 19(1), pages 89-98.
    14. Maddala, G S & Wu, Shaowen, 1999. " A Comparative Study of Unit Root Tests with Panel Data and a New Simple Test," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 61(0), pages 631-652, Special I.
    Full references (including those not matched with items on IDEAS)

    More about this item


    Cointegration; Meta Test; Multiple Testing;

    JEL classification:

    • C12 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Hypothesis Testing: General
    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:zbw:sfb475:200810. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (ZBW - German National Library of Economics). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.