IDEAS home Printed from https://ideas.repec.org/p/zbw/sfb373/199790.html
   My bibliography  Save this paper

Möglichkeiten und Ansätze der Analyse dreimodaler Daten für die Marktforschung

Author

Listed:
  • Hildebrandt, Lutz
  • Klapper, Daniel

Abstract

Die in der Marktforschungspraxis durchgeführten Datenanalysen beruhen im allgemeinen auf der stufenweisen Anwendung verschiedener Techniken zur Verdichtung der in den Daten enthaltenen Information und der Suche nach Einflußstrukturen. Üblich sind z.B. häufig die Kombiantion von informationsverdichtenden Verfahren wie Faktorenanalyse oder mehrdimensionale Skalierung mit der Clusteranalyse sowie Verfahren zur Analyse von Beziehungen wie Regressionsanalyse oder Conjoint Analyse mit der Clusteranalyse zur Aufdeckung von latenten Strukturen und den darin vorhandenen Abhängigkeiten bzw. Einflußstrukturen. Die simultane Analyse von Daten mit Verfahrenskombinationen wie sie beispielsweise in der Strukturgleichungs-Methodologie (LISREL, EQS. AMOS) in der Verbindung von Faktorenanalyse und Regressionsanalyse erfolgt, ist bisher eher die Ausnahme. Die in diesem Beitrag vorgestellte Methodik geht von der Dreidimensionalität (Stimuli, Skalen, Personen) des üblicherweise analysierten Datenkörpers aus. Jede dieser Dimensionen erfaßt eine Einflußgröße (Modalität), die in mehrere latente Faktoren, die für die Ausprägung der Beobachtungsdaten ursächlich sind, zerlegt werden kann. Grundprinzip ist die simultane Faktorenanalyse über die drei Modalitäten, wodurch die Datenverdichtung, die Aufdeckung von Strukturen und die Segmentierung miteinander verbunden werden. Die Grundidee dieses Verfahrens wurde schon in den 60er Jahren von Tucker (1963, 1966) entwickelt. Erst heute wird aber durch die Fortschritte der PC-Technik eine praktische Anwendung in der Marktforschung - mit geringen Rechenzeiten - möglich. Der vorliegende Beitrag führt in die Methodik der dreimodalen Analyse von Daten ein, erläutert deren Möglichkeiten und dokumentiert ein praktisches Anwendungsbeispiel aus der Marktforschung - die Segmentierung nach Wettbewerbsstrukturen im Spülmittelbereich. Es werden mehrere Modellansätze dargestellt und eine Anwendung des Programmpakets TUCK-ALS3 dokumentiert.

Suggested Citation

  • Hildebrandt, Lutz & Klapper, Daniel, 1997. "Möglichkeiten und Ansätze der Analyse dreimodaler Daten für die Marktforschung," SFB 373 Discussion Papers 1997,90, Humboldt University of Berlin, Interdisciplinary Research Project 373: Quantification and Simulation of Economic Processes.
  • Handle: RePEc:zbw:sfb373:199790
    as

    Download full text from publisher

    File URL: https://www.econstor.eu/bitstream/10419/66281/1/729633551.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Henk Kiers & Jos Berge, 1994. "The Harris-Kaiser independent cluster rotation as a method for rotation to simple component weights," Psychometrika, Springer;The Psychometric Society, vol. 59(1), pages 81-90, March.
    2. Bruce Bloxom, 1968. "A note on invariance in three-mode factor analysis," Psychometrika, Springer;The Psychometric Society, vol. 33(3), pages 347-350, September.
    3. A. Ralph Hakstian, 1971. "A comparative evaluation of several prominent methods of oblique factor transformation," Psychometrika, Springer;The Psychometric Society, vol. 36(2), pages 175-193, June.
    4. Carl Eckart & Gale Young, 1936. "The approximation of one matrix by another of lower rank," Psychometrika, Springer;The Psychometric Society, vol. 1(3), pages 211-218, September.
    5. Pieter Kroonenberg & Jan Leeuw, 1980. "Principal component analysis of three-mode data by means of alternating least squares algorithms," Psychometrika, Springer;The Psychometric Society, vol. 45(1), pages 69-97, March.
    6. Ledyard Tucker, 1972. "Relations between multidimensional scaling and three-mode factor analysis," Psychometrika, Springer;The Psychometric Society, vol. 37(1), pages 3-27, March.
    7. Ledyard Tucker, 1966. "Some mathematical notes on three-mode factor analysis," Psychometrika, Springer;The Psychometric Society, vol. 31(3), pages 279-311, September.
    8. Bentler, P. M. & Poon, Wai-Yin & Lee, Sik-Yum, 1988. "Generalized multimode latent variable models: Implementation by standard programs," Computational Statistics & Data Analysis, Elsevier, vol. 7(2), pages 107-118, December.
    9. P. Bentler & Sik-Yum Lee, 1978. "Statistical aspects of a three-mode factor analysis model," Psychometrika, Springer;The Psychometric Society, vol. 43(3), pages 343-352, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Paolo Giordani & Roberto Rocci & Giuseppe Bove, 2020. "Factor Uniqueness of the Structural Parafac Model," Psychometrika, Springer;The Psychometric Society, vol. 85(3), pages 555-574, September.
    2. Henk Kiers & Pieter Kroonenberg & Jos Berge, 1992. "An efficient algorithm for TUCKALS3 on data with large numbers of observation units," Psychometrika, Springer;The Psychometric Society, vol. 57(3), pages 415-422, September.
    3. Alwin Stegeman & Tam Lam, 2014. "Three-Mode Factor Analysis by Means of Candecomp/Parafac," Psychometrika, Springer;The Psychometric Society, vol. 79(3), pages 426-443, July.
    4. Pieter M. Kroonenberg & Cornelis J. Lammers & Ineke Stoop, 1985. "Three-Mode Principal Component Analysis of Multivariate Longitudinal Organizational Data," Sociological Methods & Research, , vol. 14(2), pages 99-136, November.
    5. Klapper, Daniel & Cooper, Lee G. & Hildebrandt, Lutz, 1999. "The congruence of theoretical and empirical patterns of inter-store price competition," SFB 373 Discussion Papers 1999,44, Humboldt University of Berlin, Interdisciplinary Research Project 373: Quantification and Simulation of Economic Processes.
    6. Dawn Iacobucci & Doug Grisaffe & Wayne DeSarbo, 2017. "Statistical perceptual maps: using confidence region ellipses to enhance the interpretations of brand positions in multidimensional scaling," Journal of Marketing Analytics, Palgrave Macmillan, vol. 5(3), pages 81-98, December.
    7. Werner Wothke & Michael Browne, 1990. "The direct product model for the mtmm matrix parameterized as a second order factor analysis model," Psychometrika, Springer;The Psychometric Society, vol. 55(2), pages 255-262, June.
    8. Mariela González-Narváez & María José Fernández-Gómez & Susana Mendes & José-Luis Molina & Omar Ruiz-Barzola & Purificación Galindo-Villardón, 2021. "Study of Temporal Variations in Species–Environment Association through an Innovative Multivariate Method: MixSTATICO," Sustainability, MDPI, vol. 13(11), pages 1-25, May.
    9. Henk Kiers, 1991. "Hierarchical relations among three-way methods," Psychometrika, Springer;The Psychometric Society, vol. 56(3), pages 449-470, September.
    10. Willem Kloot & Pieter Kroonenberg, 1985. "External analysis with three-mode principal component models," Psychometrika, Springer;The Psychometric Society, vol. 50(4), pages 479-494, December.
    11. Yoshio Takane & Forrest Young & Jan Leeuw, 1977. "Nonmetric individual differences multidimensional scaling: An alternating least squares method with optimal scaling features," Psychometrika, Springer;The Psychometric Society, vol. 42(1), pages 7-67, March.
    12. Jos Berge & Jan Leeuw & Pieter Kroonenberg, 1987. "Some additional results on principal components analysis of three-mode data by means of alternating least squares algorithms," Psychometrika, Springer;The Psychometric Society, vol. 52(2), pages 183-191, June.
    13. Richard Harshman & Margaret Lundy, 1996. "Uniqueness proof for a family of models sharing features of Tucker's three-mode factor analysis and PARAFAC/candecomp," Psychometrika, Springer;The Psychometric Society, vol. 61(1), pages 133-154, March.
    14. Veldscholte, Carla M. & Kroonenberg, Pieter M. & Antonides, Gerrit, 1998. "Three-mode analysis of perceptions of economic activities in Eastern and Western Europe1," Journal of Economic Psychology, Elsevier, vol. 19(3), pages 321-351, June.
    15. Alwin Stegeman, 2018. "Simultaneous Component Analysis by Means of Tucker3," Psychometrika, Springer;The Psychometric Society, vol. 83(1), pages 21-47, March.
    16. Pieter C. Schoonees & Patrick J. F. Groenen & Michel Velden, 2022. "Least-squares bilinear clustering of three-way data," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 16(4), pages 1001-1037, December.
    17. Mitzi Cubilla-Montilla & Ana Belén Nieto-Librero & M. Purificación Galindo-Villardón & Carlos A. Torres-Cubilla, 2021. "Sparse HJ Biplot: A New Methodology via Elastic Net," Mathematics, MDPI, vol. 9(11), pages 1-15, June.
    18. Elisa Frutos-Bernal & Ángel Martín del Rey & Irene Mariñas-Collado & María Teresa Santos-Martín, 2022. "An Analysis of Travel Patterns in Barcelona Metro Using Tucker3 Decomposition," Mathematics, MDPI, vol. 10(7), pages 1-17, March.
    19. Stephen Bieber & William Meredith, 1986. "Transformation to achieve a longitudinally stationary factor pattern matrix," Psychometrika, Springer;The Psychometric Society, vol. 51(4), pages 535-547, December.
    20. Giuseppe Brandi & Ruggero Gramatica & Tiziana Di Matteo, 2019. "Unveil stock correlation via a new tensor-based decomposition method," Papers 1911.06126, arXiv.org, revised Apr 2020.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:zbw:sfb373:199790. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ZBW - Leibniz Information Centre for Economics (email available below). General contact details of provider: https://edirc.repec.org/data/sfhubde.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.